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Abstract— The problem of service allocation to fulfill de-
mands emerges in many engineering applications. For example,
vehicles queuing up at a signalized junction, the servicing of
jobs by the central processing unit (CPU), service demands at
a cloud computing facility and many more. In this paper, we
propose a feedback-based solution for service allocation. Our
controller keeps the queue lengths bounded without knowledge
of the exogenous arrivals. Moreover, the proposed controller
allows for dynamic cycle lengths, i.e., the length of each service
cycle is decided by the controller. This to capture the fact
that during high demands, it can be more useful to let the
service cycles last longer to reduce the fraction of time wasted
in shifting between different services during a cycle.

I. INTRODUCTION

The allocation of service is not only a well-recognized
problem in the field of queuing theory [1] and wireless
communication [2], but also in many other application areas.
To mention a few examples, a flexible manufacturing sys-
tem [3] where one robot can switch between different tasks,
or in cloud computing [4] where individual applications
can request service from multiple virtual machines. All
these examples can be modeled by a dynamical system
with the queue lengths as states which evolve based on a
mass conservation principle involving the exogenous arrival
and service rates, with limitations on which queues that
can receive service simultaneously. The service allocation
problem is then to ensure that the queue length is bounded by
designing the service rate or the cycle length of the system.

In the seminal paper by Tassiulas and Ephremides [5],
a control strategy for service allocation was proposed and
proved to be maximally stabilizing, in the sense that all
the queue lengths are bounded for some demand and if the
demand is higher, no other control strategy will manage
to keep the queue lengths bounded either. Based on the
ideas from [5], several service allocation policies have been
developed, commonly referred to as MaxWeight policies (see
e.g. [6]). The idea behind these policies is that the service
mode chosen by the controller at each time instant is one that
maximizes a cost function that depends on the current queue
lengths. Using these kinds of policies, the same service mode
is chosen during the whole service cycle. The controller
in [5] has also been adapted to different applications, e.g.,
the MaxPressure controller for traffic networks [7].

In this paper, we present a control strategy which in place
of choosing one service mode to activate at each decision
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instance, it determines the fraction of the service cycle in
which each mode should be activated and also the length of
the service cycle. Similar controllers have previously been
proposed for computer networks in [8], [9] and traffic net-
works [7], [10] with a fixed cycle time, and in a continuous
time setting for traffic light control in [11], [12]. For real-time
applications, the idea of having a variable cycle length (i.e.,
different lengths in service time for each task) has previously
been proposed as a static open-loop scheduling problem
in [13]. Additionally, we take into account the overhead
time in switching between service modes when designing
the control policy. This is crucial because in applications
such as traffic systems, the driver requires some time to
react to the green light at a signalized traffic junction and
to then clear the junction before other lanes can be served.
In traffic theory, this is commonly referred to as start up and
clearance lost time [14]. Another example where a overhead
time is present is CPU scheduling, where there is an overhead
time in switching between different jobs called a context
switch [15].

The contributions of this paper are the following: We
provide a version of the controller proposed in [11], [12]
for discrete time systems. We also show that in contrast to
the continuous counterpart, stability can only be guaranteed
by introducing an upper bound on the cycle length. While
the proofs in [11], [12] and [8], [9] are done in continuous
time (in [8], [9] the authors preform a fluid approximation
of a stochastic system), we provide a direct discrete time
proof to show stability. Also, to the best of the authors’
knowledge, this is the first time that the stability of a discrete
time scheduler with dynamic cycle lengths is analyzed.

The outline of the paper is the following. The rest of
this section is devoted to introducing some basic notation.
In Section II, the model is presented. In Section III, we
present a theorem about the maximum stability region for
any controller, i.e., the maximum size of inflows that any
controller will be able to handle together with the proposed
proportional controller and also provide explicit examples
of the control strategy. In Section IV, we show that the
controller is stabilizing whenever the inflows are strictly
inside the maximum stability region, and in Section V, we
illustrate the control strategy on a couple of examples. The
paper is concluded with some points of interests for future
research.

A. Notation

Let Z+ denote the set of non-negative integers, R(+)

denote the set of (non-negative) reals and RA(+) the vector
of (non-negative) reals indexed by the elements of the set



A. With |A|, we mean the cardinality of the set A. We let 1
denote the vector with all ones and 0 the vector with all
zeros. Moreover, we let SA := {x ∈ RA+ | xT1 = 1}
be the probability simplex over the set A. The norm of a
vector is denoted ‖·‖. Inequalities for vectors are applied
component wise to all its components, i.e., if a < b where
a, b ∈ RA+ , then ai < bi for all i ∈ A. For a vector v ∈ Rn+,
with (v)i we mean the ith component, where 1 ≤ i ≤ n,
and for any u ∈ Rn+, v ∈ Rm+ , let (u, v) denote the vector
[uT vT ]T ∈ Rn+m

+ .

II. QUEUE MODEL AND PROBLEM FORMULATION

Let Q denote the set of queues. For each queue i ∈ Q, its
queue length xi ∈ R+ changes at discrete time instants tk,
k ∈ Z+, according to

t0 = 0 , xi(0) = x0
i , tk+1 = tk + T (x(k)) ,

xi(k + 1) = max {0, xi(k) + T (x(k))(λi − ui(x(k)))} ,
(1)

where x = (x1, x2, . . . , xq) ∈ RQ+ is the vector of queue
lengths, λi > 0 is the exogenous arrival rate, T (x(k))
and u(x(k)) = (u1(x(k)), u2(x(k)), . . . , uq(x(k))) are the
cycle length and, respectively, the averaged service allocation
during cycle k, that are allowed to be dynamically adjusted
as functions of the queue lengths through feedback policies
T : RQ+ → R+ and u : RQ+ → RQ+ to be designed. In some
applications, queues can receive services simultaneously. To
model this, we introduce a finite set of modes M where
each mode is a vector in RQ+ , which determines how much
service each queue will receive when the mode is activated.
The feedback controller’s task is then, apart from deciding
the length of the cycle, also to decide the fraction of the cycle
during which each mode should be activated. The fraction of
the cycle when no queues can receive service is called the
zero mode, which we represent by the 0 vector and is always
in the set of modes. Moreover, we will assume that every
queue can receive service according to at least one mode.
Let m denote the number of modes and M ∈ Rq×m+ be a
matrix where each column is a mode. The first column of M
contains the all zero mode. We formalize these assumptions
below.

Assumption 1: The all zero mode is in the set of modes
M, i.e., 0 ∈M. It is also assumed that M1 > 0, i.e., every
queue can receive service according to at least one mode.

Example 1: For a simple system with two queues, where
both can receive two units of service but not simultaneously,
then the set of modes is

M =

{[
0
0

]
,

[
2
0

]
,

[
0
2

]}
and the corresponding M matrix is

M =

[
0 2 0
0 0 2

]
.

The service allocation for each queue takes the form

u(x(k)) = Mθ(x(k)) , (2)

where θ = (θ0, θ1, . . . , θm−1) and θ : RQ+ → SM determines
the fraction of the cycle length depending on the length of
all the queues.

The fraction of the cycle allocated to the shifting between
modes also depends on the length of all the queues, which
corresponds to the all zero mode denoted by θ0. Hence, the
total cycle time for each cycle is

T (x(k)) =
Tw

θ0(x(k))
. (3)

where Tw ∈ (0,∞) is the time needed to shift between
different modes. We make the following assumptions about
the overhead and the cycle times.

Assumption 2: We assume a strictly positive overhead
time Tw > 0 and that there exists a maximum cycle time
Tmax > 0 such that T (x) ≤ Tmax.
This assumption is equivalent to assuming a minimum frac-
tion of time is allocated to the zero mode, w0 > 0, such that
θ0(x) ≥ w0 for all x ∈ RQ+ . In other words, we enforce a
fraction of the cycle time to account for the overhead induced
by switching between modes. Notice that by assuming a
state-independent overhead time, we do also assume that
each mode is activated only once during a cycle.

From this assumption, it follows that the cycle time is
bounded both from below and above, i.e.,

Tw ≤ T (x) ≤ Tw
w0

, ∀x ∈ RQ+ .

Our objective is to guarantee bounded queue lengths (see
Def. 1 below) via the feedback design of θ(x). To this end,
we show in Proposition 1 that the arrival rate must lie within
the region of stability (Def. 2) for any control strategy to
ensure that the queue lengths are bounded.

Definition 1 (Bounded queue lengths): The dynamical
system given by (1)-(3) is said to have bounded queue
lengths if for all i ∈ Q, there exists a constant vector
C ∈ RQ+ such that x(k) < C for all k ∈ Z+.

Definition 2 (Region of stability): For a given set of
modes M and a given w0 > 0, the arrival vector λ is
said to be in the region of stability if there exists a θ̄ =
(θ̄0, θ̄1, . . . , θ̄m−1) ∈ SM such that

λ ≤Mθ̄, θ̄0 ≥ w0. (4)

Moreover, if (4) is a strict inequality, i.e., λ < Mθ̄, λ is said
to be strictly inside the region of stability.

Proposition 1 (Necessary condition for stability):
Consider the system (1)-(3) under Assumption 1 and 2 with
any set of modes M, M ∈ Rq×m+ , any arrival rate λ > 0,
any possible mode allocation θ̄(k) for all k ≥ 0 and any
w0 > 0. If the queue lengths stay bounded, then λ must be
in the region of stability.

Proof: Observe that

x(k) = x(0) +

k−1∑
l=0

max(T (x(l))(λ− u(l)),−x(l))

≥ x(0) +

k−1∑
l=0

T (x(l))(λ− u(l)).



For k ≥ 1, the inequality above can be rewritten as

λ ≤Mθ̃(k) +
x(k)− x(0)

tk
,

where

θ̃(k) =
1

tk

k−1∑
l=0

T (x(l))θ̄(l) ,

belongs to SM such that θ0 ≥ w0, since T (x) ≥ Tw and
T (x(l))
tk

∈ (0, 1].
Since T (x) ≥ Tw, it follows that tk → +∞ as k → +∞

and hence λ ≤Mθ.
Although the proof above is conservative, we will see

that the bound is tight in Section IV. In particular, we will
propose a control policy in the next section, for achieving
the maximum possible arrival rate λ, without knowing the
value of such λ.

III. CONTROL STRATEGY

Our control strategy is to design the fraction of the cycle
length in which each mode is allocated, denoted as θ(x). We
will refer to this strategy as the proportional controller given
by

θ(x) ∈ argmax
θ∈SM,θ0≥w0

∑
i∈Q

xi log ((Mθ)i) + κ log(θ0) , (5)

where κ > 0 is a design parameter. The parameter κ
determines how much the controller should deprioritize the
overhead cost when splitting the cycle. A large κ will result
in shorter cycles compared to a small κ.

Although it may not be possible to find explicit solutions
to the convex optimization problem (5) for all possible
set of modes M, we provide an explicit solution for a
common case below. In cases when an explicit solution is not
possible to find, one can utilize the fact that the optimization
problem (5) is convex, in order to numerically compute the
service allocation and duration for the upcoming cycle.

Example 2: Let the modes be orthogonal, i.e., mTn = 0
for all m,n ∈ M with arbitrarily large service rates, µi =
(M1)i for all i ∈ Q, then

θ0(x(k)) = max

(
κ∑

i∈Q xi(k) + κ
,w0

)
,

and

ui(x) =

µi
∑

j∈P(i) xj(k)∑
j∈Q xj(k)+κ if θ0(x) > w0

(1− w0)µi

∑
j∈P(i) xj(k)∑
j∈Q xj(k) otherwise,

for all i ∈ Q, where P(i) ⊂ Q is the set of queues in the
same mode as queue i ∈ Q.

IV. MAIN RESULT AND STABILITY ANALYSIS

For the proportional controller presented in the previous
section, the following theorem holds:

Theorem 1: Consider the system (1)-(3) under Assump-
tions 1 and 2 with any set of modes M, M ∈ Rq×m+ , any
arrival rate λ > 0 and any w0 > 0. If λ is strictly inside

the region of stability, then the proportional controller (5)
ensures that the queue lengths are bounded for all initial
conditions x(0) ∈ RQ+ .

A. Proof of Theorem 1

To prove that the proportional controller given in (5) will
keep the queue lengths bounded, we will use a Lyapunov
function in the large [16].

Definition 3: (Lyapunov function in the large [16, Defi-
nition 3.2]) A Lyapunov function in the large for a discrete
time dynamical system is a function V : Rn+ → R such that

i) V is radially unbounded, i.e., lim‖x‖→+∞ V (x) = +∞.
ii) there exists θ > 0 with the following property: for all

r > θ we can find m > 0 such that if θ ≤ ‖x‖ ≤ r
then V (x) ≤ m.

iii) there exists η > 0 such that if ‖x(k)‖ ≥ η, then
V (x(k + 1)) ≤ V (x(k)).

We start by showing that

V (x) =
∑
i∈Q

xi log
ui(x)

λi
+ κ log(θ0(x)) (6)

is a Lyapunov function in the large. The queue lengths
are guaranteed to be bounded using Lyapunov based argu-
ments [16, Theorem 3.1]. The following two results state
some useful properties of the proportional controller and
will be used to prove that V (x) is a Lyapunov function in
the large. The proofs of the following lemmas are in the
appendix.

Lemma 1: Given a set of modes M, a w0 > 0 and an
arrival vector λ which is strictly inside the region of stability,
consider the system (1)-(3) under Assumption 1 and 2. For
a constant c ≥ 0, let Q1(x) = {i ∈ Q | xi < c} and
Q2(x) = {i ∈ Q | xi ≥ c}. Then, for service allocations
given by the proportional controller (5), there exists some
constants C > 0 and ε > 0 such that, if ‖x‖ > C then there
exists at least one queue i ∈ Q2 such that ui(x) ≥ λi + ε.

Lemma 2: Given a vector x ∈ RQ+ such that x > 0 and
a vector ε ∈ RQ such that x + ε > 0. The proportional
controller (5) satisfies the following: ‖θ(x)− θ(x+ ε)‖ → 0
when ‖x‖ → +∞.

We now show that (6) is indeed a Lyapunov function in
the large for system (1)-(3) with the proportional controller
(5), by checking that all three conditions in Definition 3 are
satisfied.

i) We observe from the definition of the region of stabilty
that it is possible to find a θ̄ such that λi + εi ≤ (Mθ̄)i
where εi > 0 for all i ∈ Q and θ̄0 = w0. This choice of θ̄ is
then a feasible but suboptimal solution to the maximization
problem in (5). Hence

V (x) ≥
∑
i∈Q

xi log
λi + εi
λi

+ κ log(w0)→ +∞ ,

when ‖x‖ → +∞.



ii) We have to ensure that for a bounded ‖x‖, the Lyapunov
function is bounded from above. Since x ≥ 0 we have that

V (x) ≤
∑
i∈Q

xi log
(M1)i
λi

+ κ log 1.

iii) As a last step, we need to show that the Lyapunov
function is decreasing when ‖x‖ is large enough. First
observe that the dynamics (1) can be rewritten as

xi(k + 1) = max(xi(k) + T (x(k))(λi − ui(x(k))), 0)

= xi(k) + max(T (x(k))(λi − ui(x(k))),−xi(k)).

Introduce the set Q̄ := {i ∈ Q | xi(k + 1) > 0}. Then

V (x(k + 1))− V (x(k)) =∑
i∈Q

xi(k + 1) log
ui(x(k + 1))

λi
+ κ log(θ0(x(k + 1)))

−
∑
i∈Q

xi(k) log
ui(x(k))

λi
− κ log(θ0(x(k)))

≤
∑
i∈Q̄

xi(k + 1) log
ui(x(k + 1))

λi
+ κ log(θ0(x(k + 1)))

−
∑
i∈Q̄

xi(k) log
ui(x(k))

λi
− κ log(θ0(x(k)))

≤
∑
i∈Q̄

xi(k + 1) log
ui(x(k + 1))

λi
+ κ log(θ0(x(k + 1)))

−
∑
i∈Q̄

xi(k) log
ui(x(k + 1))

λi
− κ log(θ0(x(k + 1)))

=
∑
i∈Q̄

T (x(k))(λi − ui(x(k))) log
ui(x(k + 1))

λi

=
∑
i∈Q̄

T (x(k))(λi − ui(x(k))) log
ui(x(k))

λi

+
∑
i∈Q̄

T (x(k))(λi − ui(x(k))) log
ui(x(k + 1))

ui(x(k))
,

where the first inequality above follows from the fact that
xi(k + 1) = 0 for i ∈ Q̄ while, for all i ∈ Q \ Q̄ it must
hold that ui(k) > λi. The second inequality follows from
suboptimality of the solution to (5) and the last equality from
the fact that for all i ∈ Q̄, it holds that max(T (x(k))(λi −
ui(x(k))),−xi(k)) = T (x(k))(λi − ui(x(k))).

Obeserve that

T (x(k))(λi − ui(x(k))) log
ui(x(k))

λi
≤ 0,

since (a− b) log b
a ≤ 0 for a > 0 and b > 0.

For all i ∈ Q \ Q̄, there exists a constant c > 0, such that
xi(k) < c. Then, using Lemma 1, when ‖x‖ > C where C is
constant, there exists at least one i ∈ Q̄, with ui(x) > λi+ε

′

with ε′ > 0. Hence, there exists a ε > 0 such that∑
i∈Q̄

T (x(k))(λi − ui(x(k))) log
ui(x(k))

λi
< −ε.

And since |xi(k + 1) − xi(k)| is bounded, due to the fact
that T (x(k)) is bounded, it follows from Lemma 2 that
for large enough ‖x‖ that there exists ε′′ > 0 such that
‖ui(x(k + 1))− ui(x(k))‖ < ε′′. This implies that∑

i∈Q̄

T (x(k))(λi − ui(x(k))) log
ui(x(k + 1))

ui(x(k))
≤ ξ(x) ,

where ξ(x)→ 0 as ‖x‖ → ∞. Hence

V (x(k + 1))− V (x(k)) ≤ −ε+ ξ(x) ,

when ‖x‖ > C and since there exists a C ′ > C such that
−ε+ ξ(x) < 0, negative drift is ensured.

Hence V (x) is a Lyapunov function in the large (Def. 3),
and the theorem is proved.

V. EXAMPLES

In this section, we illustrate the stabilization for the queue
model (1)-(3) using the controller (5) on numerical examples.
First, we consider a system of two queues and then illustrate
the importance of having a non-zero w0.

Example 3: Consider a system of two queues with the set
of modes

M =

[
0 1 0
0 0 1

]
.

The optimization in (5) then becomes

θ(x) ∈ argmax
θ∈SM, θ0≥w0

x1 log(θ1)+x2 log(θ2)+κ log(θ0) ,

with the solution

θ0(x) = max

{
w0,

κ

x1 + x2 + κ

}
and

ui(x) =

{
xi

x1+x2+κ if θ0(x) > w0

(1− w0) xi

x1+x2
otherwise,

i ∈ {1, 2}.

Moreover, let λ1 = 0.4, λ2 = 0.3, x1(0) = 6, x2(0) =
4, κ = 0.1, w0 = 0.1 and Tw = 1. In Fig. 1, it is shown
how the queues evolve with time, together with the cycle
time for each iteration. With κ = 0.1, we see in the figure
that the controller becomes 2-periodic after some time, i.e.,
T (x(k+2)) = T (x(k)). However, if we let κ = 1, the cycle
time T (x(k)) reaches a steady state instead. From Fig. 1, it
can also be seen that during large queue lengths, the cycles
will be longer. When the queue length has decreased, the
cycle lengths are related to the choice of κ in (5).

The need for having a lower bound on the zero mode
allocation can be illustrated with the following example.

Example 4: Let the set of modes be the same as in the
previous example and let λ1 = λ2 = λ, Tw = 1, w0 = 0.
and x1(0) = C, x2(0) = 0. The service allocations and the
cycle time for the first iteration is then given by

u1(x(0)) =
C

C + κ
,

u2(x(0)) = 0 ,

T (x(0)) =
C + κ

κ
.
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Fig. 1: How the queue lengths evolves in time together with
the cycle times for the system in Example 3. The cross
markers and the solid lines are with κ = 0.1 while the circle
markers and the dashed lines are with κ = 1. Observe that
the queue lengths are plotted with the actual time t, so the
points are not equidistant due to the variable cycle length
decided by the proportional controller (5).

Observe that the cycle time T (x(0)) is strictly increasing
with C. After one iteration the queue lengths are

x1(1) = C + T (x(0))

(
λ− C

C + κ

)
=

f(C)︷ ︸︸ ︷
C + λ

C + κ

κ
− C

κ
,

x2(1) = T (x(0))λ = λ

(
C + κ

κ

)
.

If x1(1) = 0, then due to symmetry, the analysis of the
system can be repeated in the same way with a new initial
condition. Observe that the queues will grow unbounded
when f(C) ≤ 0, f ′(C) ≤ 0 and x2(1) > C, which can
be equivalently expressed as

κ+ λ− 1 ≤ 0 ,

Cκ− λ(C + κ) < 0 ,

Cκ+ λ(C + κ)− C ≤ 0.

The choice of λ = κ = 0.1 and C = 1 is one set of
parameters satisfying the constraints, and will hence make
the queue lengths and cycle times grow unbounded. How
the queue lengths and cycle times evolve is shown in Fig. 2.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a controller for service
allocation. Apart from deciding which queues should receive
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Fig. 2: How the queue lengths evolves in time together with
the cycle times for the system in Example 4.

service, the proposed controller also decides the cycle length
dynamically. This is to allow for longer cycle lengths during
high demands, which is useful in practice. We have showed
that the proposed controller is able to stabilize the network
whenever it is possible for any controller to do so, without
knowing the exogenous arrival rates.

Future research will involve studying how the choice of
the design parameter κ affects the dynamics, and attempt to
find an optimal choice of κ. Also, extensions to queueing
networks will be studied, i.e., when the jobs has been served
at one queue, the jobs proceed to another queue. Although
the control strategies proposed in [5], [7], [9] have been
shown to be stabilizing in networks, all of them are only
designed for a fixed cycle length, i.e., the cycle time is not
dynamically allocated as in this paper. Since the cycle times
then may be different at different nodes, this will require a
continuous time model with sampled control actions.

APPENDIX

A. Proof of Lemma 1

Proof: First we show that there exists a constant C ′

such that if ‖x‖∞ > C ′ then θ0(x) = w0.
Take i ∈ Q such that xi ≥ xj for all j ∈ Q, then there

must exists a j such that Mij > 0. For that j and any choice
of θ ∈ SM with θ0 > w0 define the function θ̂ : R+ →
RM+ as θ̂j(β) = θj + β, θ̂0(β) = θ0 − β and θ̂k = θk
for all k /∈ {0, j}, where 0 ≤ β ≤ θ0 − w0. Moreover,
let f(θ, x) =

∑
i∈Q xi log((Mθ)i) + κ log(θ0) denote the



objective function in (5). Then

∂

∂β
f(θ̂(β), x) =

∂f(θ̂(β), x)

∂θj
− ∂f(θ̂(β), x)

∂θ0

=
∑
i∈Q

Mijxi∑
k∈MMikθ̂k(β)

− κ

θ̂0(β)
.

If this derivative is strictly positive in β, then the maximum
of (5) is achieved when β = θ0−w0 and θ̂0(θ0−w0) = w0.
With the observation that∑

i∈Q

Mijxi∑
k∈MMikθ̂k(β)

− κ

θ̂0(β)
≥ m∗
m∗
‖x‖∞ −

κ

w0
,

where m∗ > 0 is the maximal element in M and m∗ > 0 is
the non-zero minimal element in M , the derivative is strictly
positive when

‖x‖∞ >
κ

w0

m∗

m∗
.

Now, recall that u(x) = Mθ(x), where

θ(x) ∈ argmax
θ∈SM,θ0≥w0

∑
i∈Q

xi log((Mθ)i) + κ log(θ0).

Suppose for the rest of the proof that ‖x‖∞ > C ′, then the
maximization problem can equivalently be written as

θ(x) ∈ argmax
θ∈SM,θ0=w0

∑
i∈Q

xi log((Mθ)i). (7)

Moreover, since λ is supposed to be strictly inside the
region of stability, there exists a θ̄ ∈ SM with θ̄0 = w0 such
that λ + ε ≤ Mθ̄ for some ε > 0. For all x ∈ RQ+ we have
that ∑

i∈Q
xi log(λi + εi) ≤

∑
i∈Q

xi log((Mθ̄)i) ,

but also ∑
i∈Q

xi log((Mθ̄)i) ≤
∑
i∈Q

xi log(ui(x)) ,

since θ̄ is a suboptimal solution to (7). Combining the
inequalities above gives that∑

i∈Q
xi log(λi + εi) ≤

∑
i∈Q

xi log(ui(x)) (8)

and hence there must exist at least one i ∈ Q such that
λi + εi ≤ ui(x).

Rearranging the inequality in (8), we obtain∑
i∈Q

xi log
ui(x)

λi + εi
≥ 0. (9)

Now, let i∗ ∈ argmaxi∈Q xi. If ui∗(x) ≥ λi + ε, for
some ε > 0, then the proof is done. If not, then rewrite
inequality (9) as

∑
i∈Q\{i∗}

xi log
ui(x)

λi + ε
+ xi∗ log

ui∗(x)

λi∗ + ε/2
+

xi∗ log
λi∗ + ε/2

λi∗ + ε
≥ 0.

Since

xi∗ log
ui∗(x)

λi∗ + ε
≤ 0 ,

it holds that∑
i∈Q\{i∗}

xi log
ui(x)

λi + ε
≥ xi∗ log

λi∗ + ε

λi∗ + ε/2
≥ xi∗ .

On the other hand,∑
i∈Q\{i∗}

xi log
ui(x)

λi + ε
≤

∑
i∈Q1

c log
(M1)i
λi + ε

+
∑

i∈Q2\{i∗}

xi log
ui(x)

λi + ε
,

where the inequality follows from the definition of Q1, and
hence ∑

i∈Q2\{i∗}

xi log
ui(x)

λi + ε
≥ xi∗ −

∑
i∈Q1

c log
(M1)i
λi + ε

.

So when

‖x‖∞ ≥
∑
i∈Q1

c log
(M1)i
λi + ε

,

it must hold for at least one i ∈ Q2\{i∗} that ui(x) > λi+ε.
Hence it is possible to find a constant C ≥ C ′ such that if
‖x‖∞ > C, then ui(x) ≥ λi + ε for at least one i ∈ Q2.

B. Proof of Lemma 2

Proof: Introduce the function θ̃ : RQ+ × R+ → SM as

θ̃(x, κ) = argmax
θ∈SM,θ0≥w0

∑
i∈Q

xi log ((Mθ)i) + κ log(θ0).

Observe that θ̃(x, κ) = θ(x) where θ(x) is given by (5).
Moreover, if ‖x‖ > 0, it holds that θ̃( x

‖x‖ ,
κ
‖x‖ ) = θ̃(x, κ).

Then, from the maximum theorem [17, Theorem 9.14] it
follows that θ̄(x, κ) is continuous in x and κ, i.e., for a
given ε′ > 0 there exists a δ > 0 such that if∥∥∥∥ 1

‖x‖
(x1, x2, . . . , xq, κ)− 1

‖x‖
(x̃1, x̃2, . . . , x̃q, κ̃)

∥∥∥∥ < δ ,

then ∥∥∥∥θ̃( x

‖x‖
,
κ

‖x‖

)
− θ̃

(
x̃

‖x‖
,
κ̃

‖x‖

)∥∥∥∥ < ε′.

Let x̃i = xi + εi and κ̃ = κ. Hence, for every choice of ε′,
we can choose x ∈ RQ+ such that

‖x‖ > ‖(ε1, ε2, . . . , εq, 0)‖
δ

,

which proves the lemma.
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