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Abstract— We investigate robustness properties of the Gen-
eralized Proportional Allocation (GPA) policy that has been
recently proposed for traffic signal control in urban networks.
The GPA policy is fully decentralized, relies only on local
information on the current congestion state, and requires no
knowledge of the routing, the exogenous inflows, or the network
structure. In previous work, we proved throughput optimality of
the GPA policy, by showing that it is able to stabilize the traffic
network dynamics whenever any controller is able to do so. In
this paper, we first extend these results by showing that even
when the measurements have offsets, the GPA policy maintains
the same stability properties as with exact measurements. A
comparison between the GPA and the MaxPressure traffic
signal controllers with respect to robustness is also performed in
a microscopic traffic simulator, where it is shown that while the
GPA can handle offsets in the measurements, the MaxPressure
controller may make vehicles wait forever.

Index Terms— Traffic Signal Control, Transportation Net-
works, Decentralized Control

I. INTRODUCTION

With the recent development of new sensing technology
for traffic measurements, such as cameras [1], together with
more rapidly changing traffic demands due to, e.g., online
routing, there is a growing need for feedback control in
transportation networks. This to easily adopt new settings and
keep the network operating smoothly under high demands.

While the earliest traffic signals were operated manually,
better solutions to control traffic signals have been developed
in line with the overall technological development. While
several fairly complex solutions for control of traffic signals
have been proposed, such as SCAT [2], SCOOT [3], and
UTOPIA [4], those strategies lack formal guarantees of
stability and are not decentralized.

One feedback based control strategy with provable stabil-
ity properties for traffic signal control is the MaxPressure
controller, presented in [5], [6]. It is an adaptation of the
BackPressure controller [7], originally designed for queueing
networks, to transportation networks. While the MaxPres-
sure controller is decentralized and throughput optimal, the
controller requires information about the routing, i.e., how
vehicles turn in each junction. If the routing information is
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available to the controller, MPC-like solutions are possible
as well, as proposed in e.g., [8], [9], [10], [11].

The Generalized Proportional Allocation (GPA) controller,
recently proposed in [12], is decentralized and a throughput
optimal controller for traffic signals. Throughput optimality
means that no other controller can handle a larger amount of
exogenous inflow compared to the GPA controller. Moreover,
the GPA controller does not require any information about
the routing. The ideas behind the GPA controller are related
to another scheduler originally designed for communication
networks, namely Proportional Fairness [13], [14].

In practical traffic applications, it is quite common that
the sensors that measure the traffic volumes are not perfectly
tuned, or the traffic volumes in the queues are not perfectly
estimated from, e.g., loop detectors. It therefore makes sense
to ensure that control strategies for traffic signals can perform
well, even if the measurements are not perfect. In this paper,
we investigate the robustness properties of the previously
proposed GPA controller with respect to errors in the traffic
volume measurements. Specifically, we will assume that
the measurements of the traffic volumes are affected by a
permanent additive disturbance. We will show that even if
the GPA controller is not aware of that the measurements are
affected by a disturbance, throughput-optimality and hence
stability of the traffic network is still guaranteed.

The paper is organized as follows: the rest of this section
is devoted to introducing some basic notation. In Section II,
the dynamical model for the transportation network with
signalized junctions is introduced. In Section III, we describe
the GPA controller and show that despite the fact that the
measurements are disturbed by an offset, the controller is
still both stabilizing and being throughput optimal. In the
following section, Section IV, we verify the GPA controller’s
performance in micro-simulator when there are measurement
errors. We also investigate how the MaxPressure performs
with the same faulty sensors. The paper is concluded with a
few pointers to future work.

A. Notation

Let R(+) denote the (non-negative) real numbers. For a
finite set A, RA denotes the set of all vectors indexed by the
elements in A. For a vector a ∈ Rn, we let diag (a) ∈ Rn×n
be a matrix with the components of a on diagonal and all
off-diagonal elements zero. With 1 we denote a vector whose
all elements equals one. For a subset S of a metric spaceM,
int(S) denotes the interior of the set S and for a x ∈ M,
dist(x,S) denotes the shortest distance between x and S.
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Fig. 1. Example of a part of a transportation network and the corresponding
the graph representation. Each junction is a node, and each lane between
the junctions is a link, which we refer to as a cell.

II. MODEL

As in [12], the topology of the transportation network is
modeled as a multigraph with flow capacities G = (V, E , c)
where V is the set of signalized junctions and E is the set
of cells between the junctions where vehicles can propagate.
In contrast to a graph, by using a multigraph we allow for
several cells between two junctions, as illustrated in Figure 1.
The traffic volumes in the cells will be the state space, and
they will be denoted x ∈ X where X = RE+. The outflow
from each cell i ∈ E is limited by a fixed outflow capacity,
denoted ci ∈ R+ and the vector of all outflow capacities
is denoted c ∈ RE+. Moreover, we introduce the outflow
capacity matrix C = diag (c) and we will see later on why
it is convenient.

To a subset of the cells, there is an exogenous inflow of
vehicles. For a given cell i ∈ E , the exogenous inflow is
denoted λi ∈ R+ and the vector of all exogenous inflows is
denoted λ ∈ RE+.

To model how the vehicles propagate through the network,
we introduce the routing matrix R ∈ RE×E+ . An entry Rij
represents the fraction of vehicles that will move from cell
i ∈ E to cell j ∈ E . Hence Rij = 0 when cell i is not
connected to cell j through a node. Moreover, for each cell
i ∈ E , the routing matrix has to satisfy

∑
j Rij ≤ 1, where

1−
∑
j Rij is the fraction of flow that will leave the network

after flowing out from cell i.
A pair (λ,R) of an exogenous inflow vector and a routing

matrix is said to be in-connected if for every j ∈ E , there
exists a cell i ∈ E with λi > 0 and a length l ≥ 0 path i =
i0, i1, . . . , il = j such that Π1≤k≤lRik−1,ik > 0. Moreover, a
pair (λ,R) is said to be out-connected if for every cell i ∈ E
with λi > 0 there exists a cell j ∈ E with

∑
k Rjk < 1

and a length l ≥ 0 path i = i0, i1, . . . , il = j such that
Π1≤k≤lRik−1,ik > 0. A routing matrix R is said to be out-
connected if the pair (λ,R) is out-connected for every choice
of λ.

To model the fact that a limited amount of cells can receive
green light service simultaneously at a signalized junction,
we introduce the set of phases. For a given junction v ∈ V ,
let Ev denote the set of incoming cells to the junction. The
set of phases then consists of subsets of the incoming cells
Ev . Formally, we define the set of phases Pv for a junction
v ∈ V as Pv ⊆ {Q | Q ⊆ Ev}. The set of phases can
be described through a binary matrix P (v) ∈ {0, 1}Ev×Pv

,
where each column corresponds to one phase,

P
(v)
i,j =

{
1 if cell i ∈ Ev is activated in phase j ∈ Pv ,
0 if cell i ∈ Ev is not activated in phase j ∈ Pv .

From the phase matrices for each junction, the global phase
matrix is defined as

P =


P (1)

P (2)

. . .
P (v)

 .
We will throughout the paper make the natural assumption

that each cell belongs to at least one phase, i.e., P1 ≥ 1.
Moreover, we will say that the phases are orthogonal if each
cell only belongs to one phase, i.e., P1 = 1. With the
definition of phases, we can now provide a full definition
of a flow network:

Definition 1 (Flow network): A flow network N =
(G, R, λ, P ) is a tuple consisting of a multigraph with flow
capacities G, a routing matrix R, a vector of exogenous
inflow λ, and a phase matrix P .

The dynamics of the flow network follows from the
mass conservation law: the change of traffic volume is the
difference between the combination of the exogenous and
upstream inflows and the outflow from the cell, i.e.,

ẋ = λ− (I −RT )z , x ≥ 0 , (1)

where z ∈ RE+ is the vector of outflows from the cells.
Apart from the outflow capcity, the outflow from each cell

is limited by the phase activation. The task of the signalized
junction controller is to control the fraction of time that each
phase should be activated. To model this, we introduce the
set of control signals as

U = Πv∈V Uv ,

where
Uv =

{
u ∈ RP

v

+ | 1Tu ≤ 1
}
,

where 1 −
∑
q∈Pv uq is the fraction of the cycle allocated

to phase shifts. With the set of phases and control signals
introduced, the outflow z in (1) is then limited by

0 ≤ z ≤ CPu , u ∈ U . (2)

While the dynamics specified by (1) and (2) allow for several
choices of the outflow vector z, we will further on make the
assumption that if there are vehicles present in a cell, they
will leave the cell with the maximum flow allowed by the
controller, i.e.,

xT (CPu− z) = 0 . (3)

Under this assumption, together with the assumption that
R is out-connected, it has been showed that the dynamical
system (1)–(3) has a unique solution both when the control
action u is determined by an open loop controller [15] for
piece-wise constant inflows λ, and when the control action
is a Lipschitz continuous function of the state x [16], i.e.,
closed loop control, for time-varying inflows λ.

A flow-network with dynamics (1)–(3) is said to be stable
if the traffic volumes x(t) remain bounded in time t. This
implies that with a continuous inflow of vehicles, the vehicles
entering the network will eventually leave the network as



well. Whether a traffic signal controller is able to stabilize
the flow network or not, depends upon the magnitudes of the
exogenous inflows λ. Since R is out-connected, it follows
from e.g., [17, Theorem 2], that (I −RT ) is invertible, and
the arrival rates at equilibrium can then be computed as

a = (I −RT )−1λ .

A control strategy u is said to be throughput optimal if
the following definition is satisfied:

Definition 2 (Throughput-optimal): A control strategy u
for a flow network N = (G, R, λ, P ) with an out-connected
routing matrix R is said to be throughput optimal if for every
λ ∈ RE+ such that

(I −RT )−1λ ∈ int(Z) , (4)

where

Z = {z ∈ RE+ | 0 ≤ z ≤ CPν for some ν ∈ U} ,

is able to stabilize the flow network with dynamics given
by (1)–(3).

The reason for including the constraint (4) in the defini-
tion, is that it has already been shown in [12] that if λ does
not fulfill condition (4) it is impossible for any traffic signal
controller to stabilize the flow network.

While the definition of throughput-optimality holds for any
structure of traffic signal controllers, we will for the rest of
this paper focus on feedback based controllers υ(x), i.e., the
control signal u depends on the traffic volumes x such that
u = υ(x).

III. GPA CONTROL WITH OFFSETS IN THE
MEASUREMENTS

In this section we will show that despite the measurements
for the GPA controller is affected by an offset, the stability
properties still hold. To emphasize the distributed nature of
the controller, for each junction v ∈ V , we let x(v) denote
the projection of x on Ev . Under the assumption that the
phases are orthogonal, the standard GPA controller, υ(v)q (x),
that computes the fraction of time that each phase q ∈ Pv
for each junction v ∈ V based on the traffic volumes x, for
each phase q ∈ Pv , is given by [12]:

υ(v)q (x(v)) =
(PTx)q

κv +
∑
r∈Pv (PTx)r

=

∑
i Piqxi

κv +
∑
j∈Ev xj

.

(5)
In the expression above, κv > 0 is modeling parameter
introduced to capture the fact that a fraction of the green
light service cycle has to be devoted to phase shifts. The
outflow zi from each cell i ∈ E is then limited by

ζi(x̃) = CPυ(x) . (6)

While the analysis in [12] has been done under the
assumption that the measurements are perfect, we will in
this paper assume that the measurements are affected by an
offset. Let x̃ denote the measured traffic volumes, such that
x̃i = xi+di where di ≥ 0 is a non-negative constant offset in

the measurement. Observe that this offset is unknown to the
controller, and only introduced in the analysis to be able to
compare the measured values with the true traffic volumes.
Under the assumption that the phases are orthogonal, for
each junction v ∈ V the phase activation υ(v)q of phase υ(v)q

is now determined by

υ(v)q (x̃(v)) =
(PT x̃)q

κv +
∑
r∈Pv (PT x̃)r

=

∑
i Piq(xi + di)

κv +
∑
j∈Ev (xj + di)

.

(7)

Remark 1: With positive offsets di > 0, the controlled
outflow ζi(x) is strictly positive for an empty cell xi. If
the inflow to the cell is less than ζi(x), it must hold that
z < ζi(x). This justifies the need for a differential inclusion
description of the dynamics. In previous work [18], it has
been shown that if each phase only consists of one single cell
the differential inclusion can be avoided. This since it holds
that limxi→0+ ζi(x) = 0. This property is not even true for
this simplified phase structure when the measurements have
offsets.

The following theorem ensures both stability, i.e., that the
traffic volumes will stay bounded, and throughput optimality
of the GPA controller, when the traffic volume measurements
are affected by a constant offset:

Theorem 1: Consider the flow network N = (G, R, λ, P )
with the dynamics given by (1)–(3), orthogonal phases, and
the controller u given by (7). Assume that (λ,R) is both in-
and out-connected and that measurements of traffic volumes
are disturbed by a constant offset d ∈ RE+. Introduce the set

X ∗ = {x ∈ X | ζ(x) ≥ 0, xT (ζ(x)− a) ≥ 0} .

If (I − RT )−1λ ∈ int(Z), for any initial traffic volumes
x(0) ∈ X , the traffic volumes x(t)→ X ∗, as t→ +∞.

Proof: The proof is a LaSalle-like argument. We start
by introducing the function H : RE+ × RP+ → R as

H(x, ν) =
∑
i∈E

(xi+di) log
(CPν)i
ai

+
∑
v∈V

κv log
1− 1T ν(v)

bv
,

(8)
where

bv = 1− min
ν ∈ Uv :

C(v)P (v)ν ≥ a(v)
1T ν .

Observe that bv > 0, due to the assumption that a ∈ int(Z).
Let

V (x) = max
v∈U

H(x, v) . (9)

We will now show that V (x(t)) is non-increasing with
respect to time t and strictly decreasing outside the set X ∗.
We start by observing the following properties of V (x):

i) The controller υ in (7) with offsets in the measurements
is the maximizer in (9), i.e.,

V (x) = H(x, υ(x̃)) .



ii) For all x ∈ X , it holds that V (x) ≥ 0.
iii) For all xi > 0, it holds that

∂V

∂xi
= ωi(x) , where ωi(x) = log

(
ζi(x)

xi

)
.

To show property i), introduce the function L : RE+ ×RP+ ×
RV+ → R as L(x, ν, γ) = H(x, ν) +

∑
k∈V γk(1− 1T ν(k)).

Necessary conditions for optimum are that

∂L

∂ν
(v)
q

=
1

ν
(v)
q

∑
i∈Ev

P
(v)
iq (xi + di)−

1

1− 1ν(v)
κv − γv = 0 ,

for all q ∈ Pv and all v ∈ V . From the complementary
slackness principle, we get that either 1 − 1T ν(k) is zero,
which clearly can not be a maximum, or γk = 0. For the
latter case, it holds that

1

κv

∑
i∈Ev

P
(v)
iq (xi + di) =

ν
(v)
q

1− 1T ν(v)
, (10)

for all q ∈ Pv and all v ∈ V . Summing up the expression
above over all phases q ∈ Pv and using the fact that the
phases are orthogonal yields

1

κv

∑
i∈Ev

(xi + di) =
1T ν(v)

1− 1T ν(v)
,

and hence

1T ν(v) =

∑
i∈Ev (xi + di)

κv +
∑
i∈Ev (xi + di)

. (11)

By combining (10) and (11) we get

v(v)q =

∑
i∈Ev Piq(xi + di)

κv +
∑
i∈Ev (xi + di)

,

which, together with the concavity of (8), proves that (7) is
the maximizer in (9).

Property ii) follows from the fact that if we pick a ν̃ ∈ U
such that (CPν̃)i ≥ ai, for all i ∈ E and 1− 1T ν̃(k) = bk,
which is possible to find due to the definition of bk, then

V (x) = max
ν∈U

H(x, ν) ≥ H(x, ν̃) ≥ 0 .

To show property iii): let xε ∈ X be a vector such that
xεi = xi + ε and xεj for all j 6= i ∈ E . Then

V (xε)− V (x) =∑
j∈E

(xεj + dj) log
ζj(x

ε)

aj
+
∑
v∈V

κv log
1− 1Tυ(v)(xε)

bv

−
∑
j∈E

(xj + dj) log
ζj(x)

aj
+
∑
v∈V

κv log
1− 1Tυ(v)(x)

bv

≥
∑
j∈E

(xεj + dj) log
ζj(x)

aj
+
∑
v∈V

κv log
1− 1Tυ(v)(x)

bk

−
∑
j∈E

(xj + dj) log
ζj(x)

aj
+
∑
v∈V

κv log
1− 1Tυ(v)(x)

bk

= ε log
ζi(x)

ai
,

1
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Fig. 2. The Manhattan-like grid used in the simulations.

where the inequality follows from the fact that
H(xε, υ(xε)) = maxν∈U H(xε, ν) ≥ H(xε, υ(x)). In
the same manner, we have that

V (xε)− V (x) ≤ ε log
ζi(x

ε)

ai
.

By combining the bound we get

log
ζi(x)

ai
≤ 1

ε
(V (xε)− V (x)) ≤ log

ζi(x
ε)

ai
.

Since ζ(x) depends continuously on x, letting ε→ 0 proves
the statement in iii).

The rest of the proof for that V (x(t)) is non-increasing
with respect to time t and strictly decreasing outside the set
X ∗ follows the same way as the proof of Theorem 1 in [19].

Remark 2: Observe that the GPA controller is still
throughput optimal, despite the offsets in the traffic volume
measurements. This implies that even if the sensors are not
perfectly tuned, the controller is still able to handle the same
amount of inflow that any other stabilizing controller is able
to handle with perfect measurements.

Remark 3: Even though the offsets in the measurements
can be caused by badly tuned sensors, one can also delib-
erately introduce offsets to change the equilibrium of the
system. For instance, if the arrival rates at equilibrium are
known and the equilibrium is unique, by adjusting the offsets
one can get a controller that keeps the equilibrium close zero.

IV. VALIDATIONS ON A MICROSCOPIC TRAFFIC
SIMULATOR

In this section, we will investigate how the offsets in
the measurements affect the GPA controller’s performance
in a microscopic simulator for vehicle traffic, SUMO [20].
The setting we are using is an artificial Manhattan-like grid,
shown in Figure 2. All streets with an odd number or indexed
by letter A, C, E, G, or I consist of one lane in each direction
and the others consist of two lanes. This means that there are
four different types of junctions in the network and the four
types together with their phases are shown in Figure 3. The
distances between the junctions, all signalized, are all 300
meters. Fifty meters before each junction, each street has an
additional lane for vehicles turning left.
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Fig. 3. The four different types of junctions present in the Manhattan grid,
together with theirs set of phases.

For the simulations, we generate three different demand
scenarios. All demands are generated for a fixed routing
matrix, where in each junction 20 percent of the vehicles
will turn left, 20 percent will turn right, and the rest will
continue straight when they approach the junctions. All
trips are started from the roads at the boundary of the
network and end when the vehicle eventually leaves the
network. For each road at the boundary and every second
a vehicle will depart with probability l = 0.05, 0.10, 0.15.
Departures are allowed for the first 3600 seconds, and the
simulation will go on until the network is empty. This
demand profile will cause different loads in different parts
of the network; the central part will be more loaded than the
boundary. It is worth emphasizing that the demand generation
is done before the simulations, so all simulations with the
same departure probability l will have to serve exactly the
same demand profile. For a complete description about the
scenario, see [21], where the same scenario is used without
offsets in the measurments.

All the signalized junctions are equipped with sensors that
are able to measure the number of vehicles queueing up,
up to 50 meters before the junctions. The simulations are
performed both when the sensors’ measurements are exact
and when they are affected by offsets. The offsets are set
to be one vehicle for sensors located north and east of
the junctions and two vehicles for sensors to the west of
the junction. The sensors south of each junction are set to
measure the queue lengths accurately.

A. GPA Controller

In the scenario, the phases are orthogonal and we will
follow the discretization of the GPA controller presented
in [21], which means that at the beginning of each cycle,
the signal controller in each junction v ∈ V computes the

fraction of the upcoming cycle that each phase q ∈ Pv
should be activated according to (7). Since 1−

∑
q∈Pv ν

(v)
q

corresponds to the time for phase shifts, and this is in practice
a fixed amount of time, a direct expression for the total cycle
length can be obtained. The cycle length for the upcoming
cycle is given by

T (v)
cyc (t) = Twn(t) +

Twn(t)

κv

∑
i∈Ev

x̃i(t) ,

where n(t) is the number of phases that are going to be
activated during the upcoming cycle, and Tw > 0 the time
each clearance phase, i.e., when the traffic signal is showing
a yellow light, should be activated. In the simulations we let
Tw = 4 seconds.

B. MaxPressure Controller

To show that it is not certain that all throughput optimal
controllers are able to handle offsets in the measurements, we
will simulate the MaxPressure (MP) controller in the same
simulation setting. In difference to the GPA controller, the
MaxPressure controller needs information about the routing
matrix R. For the simulations, we will assume that the
MaxPressure controller has perfect knowledge of the routing
matrix. With the knowledge of the routing matrix and under
the assumption that the flow rates are the same for all
phases, the MaxPressure controller works as follows: First,
it computes the pressure, wq , for each phase q ∈ Pv as

wq(t) =
∑
i∈q

(
x̃i(t)−

∑
j∈E

Rij x̃j(t)

)
.

Then, the MaxPressure controller activates any phase in the
set argmaxi wi. In the simulation we activate this phase for
10 seconds, then activate a clearance phase for 4 seconds.
After that, the pressures are computed again and a new phase
is activated.

C. Simulation Results

In Figure 4 simulations for the three different load sce-
narios are shown for both controllers, both when the sensors
measure the actual queue lengths and when the measure-
ments have offsets. For the GPA controller, the tuning
parameter κ is set equal 5 for the scenarios with l = 0.05 and
l = 0.10, since this has been shown to be a reasonable choice
in [21] when the measurements are accurate. For the scenario
with the highest load, κ was et equal to 15, since a lower
κ will cause longer cycles and too large back-spill effects.
The back-spills will then cause a grid-lock. This issue arises
because of the finite vehicle storage in the lanes, and hence
does not contradict the analysis in the previous sections. In
the figure it can also be seen that although the MaxPressure
controller performs well during the loading phase of the
simulations, it is not able to drain the network when there
are no vehicles flowing in anymore.

In Table I we show the running time until all the vehicles
have left the network when the measurements have offsets.
Interestingly, with the MaxPressure controller, this may never
happen. This is due to the fact that if the measurements have
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TABLE I
TOTAL RUNNING TIME

Setting Time to Empty [s]
MP l = 0.05 +∞
MP l = 0.10 +∞
MP l = 0.15 +∞

GPA l = 0.05 κ = 5 6169
GPA l = 0.10 κ = 5 6600

GPA l = 0.15 κ = 15 7898

offsets, a queue with zero vehicles and positive offset may
give its corresponding phase higher pressure compared to a
queue with zero offset and a few vehicles. The MaxPressure
controller will then repeatedly activate this phase with the
empty queue and let the queueing vehicles wait forever.

V. CONCLUSIONS

We have studied robustness properties of the GPA con-
troller, in the case when the traffic volume measurements are
affected by offsets. We have shown that the GPA controller
is still able to stabilize the network, without having any
information about the offsets. Despite the offsets in the
measurements, the GPA controller is still throughput optimal.
Although the formal analysis is carried out in an averaged
model, we have also shown in a microscopic traffic simulator
that the GPA controller can handle this kind of disturbances
well. We also observed that MaxPressure controller is more
sensitive than the GPA controller to measurement offsets. In
the future, we plan to investigate time-varying disturbances,
both in the measurements and in the exogenous inflows, as
well as dynamic routing (c.f. [22] and references therein).
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