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Abstract— Urban air mobility, in which air transportation is
used for relatively short trips within a city or region, is emerging
as a possible component in future transportation networks. In
this paper, we study the problem of how to schedule urban
air mobility trips when travel times are uncertain. Unlike in
ground transportation, urban air mobility scheduling has to
take into account that there is limited landing capacity at each
destination, and for safety reasons, it must be guaranteed that
an air vehicle will be able to land before it can be allowed to
take off. We first present a network model for an on-demand
urban air mobility service with uncertain travel times and
limited landing capacity at nodes. For the practically relevant
special case of one final destination and many origins, we give
necessary and sufficient conditions for a feasible schedule to
exist for a given demand of flights. Next, we present a mixed
integer program for obtaining an optimal schedule in this case.
The paper concludes with a numerical study for a previously
proposed urban air network in the city of Atlanta, Georgia.

I. INTRODUCTION

There is growing interest in utilizing urban airspace
for transportation of people and goods. Both commercial
mobility-on-demand operators [1] and state funded research
institutes, such as NASA [2], are exploring such urban air
mobility (UAM) solutions in cities and surrounding regions.
Studies such as [3]–[8] propose various approaches to allow
urban air vehicles (UAVs) to travel safely and efficiently
through cities. These proposed ideas cover a wide range of
possibilities such as allowing UAVs to land at vertistops
or vertiports installed on roofs of existing buildings or
within cloverleaf exchanges on freeways. Several simulation
tools [9]–[11] have also been developed, many of them based
on how commercial airline traffic is managed today, while
others focus on safe coordination of unmanned drones.

In this paper, we study scheduling for UAM networks
that accounts for uncertainty in travel time and limited
landing capacity. These two aspects have not been considered
together in any other UAM solutions. We focus on the
practically relevant class of star-branch networks consisting
of a main destination node, multiple leaf origin nodes, and
possibly intermediate nodes between leaf nodes and the
destination node. This model captures, for example, travel
from exurbs to a main city with possible stops at additional
suburbs along the way and is the configuration for all four
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UAM networks (metro areas of Austin, Atlanta, Boston, and
San Francisco) considered the INRIX report [6].

We assume given a demand of flights from origin nodes
with arrival deadlines at the destination and consider the
problem of scheduling flight departures to ensure that all
flights arrive no later than the specified deadline and that
there is always an available landing spot at the destination
and intermediate nodes when each flight arrives. The main
contributions are as follows. First, we formalize an extensible
UAM network model accounting for uncertain travel times
and limited landing capacity; this model is easily extended
and modified for future research. Second, we present neces-
sary conditions for the existence of a feasible schedule for
the UAM network. When there are no intermediate nodes,
we also show that this condition is sufficient for feasibility.
Third, we present a mixed integer program to compute an
optimal schedule for the UAM network. We demonstrate our
approach on a case study in Atlanta, Georgia based on the
example considered in [6].

In the transportation scheduling literature, prior works
have considered uncertain travel times or limitations on park-
ing capacity separately. Particularly, [12] investigates how
the flow of UAVs depends on the congestion level and finds
through simulations similarities with ground highway traffic
with high traffic density. However, different from today’s
mobility-on-demand services on the ground, the availability
of landing spots at vertistops or vertiports will be limited for
UAM networks. Since UAVs will have limited power storage,
safety concerns will dictate that each UAV is guaranteed an
available landing spot upon arrival. In addition, UAM travel
is particularly vulnerable to uncertain travel times caused by
the relatively short travel distances and high variability of
factors such as weather. Moreover, for UAM solutions, it is
likely that the UAV will only stay on the ground for a short
amount of time (e.g., several minutes) to unload and load
passengers, emphasizing the importance of timely operation
of the whole system.

Uncertainty in routing problems has also been studied
before for ground transportation. The paper [13] provides
a literature review of such problems, and examples of more
recent work are presented in [14], which studies computation
of minimum-cost paths through a time-varying network and
considers several classes of waiting policies. In [15], a the-
oretical basis for optimal routing in transportation networks
with highly varying traffic conditions is provided, where the
goal is to maximize the probability of arriving on time at a
destination given a departure time and a time budget.

As mentioned earlier, the availability of landing spots upon



arrival is critical for safe operation of a UAM network.
While the parking availability problem is not usual in ground
transportation, it can be critical for truck scheduling, where
the drivers are usually required by law to park and rest after
a specified amount of driving time. This problem has been
addressed in [16], where the authors consider deterministic
travel time between different locations and the truck drivers
only have access to parking spots during specific time
windows, but space limitations at the parking spots are not
considered. In [17] the authors solve a similar problem with
time-dependent travel times, but do not take the availability
of parking spots into account.

Scheduling problems have also been well-studied in the
real-time systems community, e.g., in [18], [19], where jobs
often are assumed to arrive with a fixed periodicity and in
some models have an uncertainty in their processing time.
Our fundamental limits are similar in nature and compat-
ible with those found in these works, but our results are
tailored to applications in UAM networks. For example, for
finite demands, we consider scheduling to achieve prescribed
deadlines without excessively early departure times.

The remainder of this paper is organized as follows: In
Section II we present the UAM network model. In Sec-
tion III, we introduce the concept of schedule feasibility
in the limit and present necessary and sufficient conditions
for feasibility. In Section IV, we present a mixed integer
optimization problem to obtain optimal schedules. We then
demonstrate in Section V the proposed solution for a realistic
scenario of the city of Atlanta proposed in the recent INRIX
report [6].

We let N denote the natural numbers without zero while
N0 the natural numbers with zero, and R the reals while R+

the positive reals. For a finite set A, we let RA, denote the
set of vectors indexed by the elements in A.

II. PROBLEM FORMULATION

We model an urban air mobility (UAM) network using a
special class of directed graph G∗ = (V∗, E∗), where the set
of nodes V∗ consists of: a central node v0; L leaf nodes
vl for l = 1, 2, . . . , L; and, for each leaf node vl, a set
of intermediate nodes between vl and the central node v0
denoted vl,k for k = 1, 2, . . . ,Kl for Kl ∈ N0. If Kl = 0,
then there are no intermediate nodes between vl and v0. Then
E∗ = {(vl,k, vl,k−1) | 1 ≤ l ≤ L and 1 ≤ k ≤ Kl + 1} is
the set of links for the network, where we let vl,0 = v0 and
vl,Kl+1 = vl for all l. We define any graph that satisfies the
conditions above as a star-branch graph. An example star-
branch graph is shown in Fig. 1 and serves as the case study
below, where the central node is labeled ATL, the leaf nodes
are labeled BUF, KEN, and ALP, and the intermediate notes
are labeled a, b, and c.

In a star-branch graph, for each leaf node vl, there exists
a unique set of connected links {el,k}Kl+1

k=1 along the path to
the central node v0, where we let el,k = (vl,k, vl,k−1). We
define branch l as the pair ({el,k}Kl+1

k=1 , {vl,k}Kl+1
k=0 ).

Each node has a capacity, determined by how many UAVs
the node can handle simultaneously. For a node v ∈ V∗ we
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Fig. 1. A star-branch graph for a UAM network of Atlanta (ATL) with
three exurbs: Alpharetta (ALP), Kennesaw (KEN) and Buford (BUF). We
consider Atlanta as the central node, and there are 0, 1, 2 intermediate nodes
between Atlanta node and the three leaf nodes “ALP”, “KEN” and “BUF”,
respectively. The time interval need for traveling through each link is labeled
beside the corresponding link.

denote its capacity as Cv ∈ N0, that is, there are Cv parking
slots at node v where each parking slot allows at most one
UAV to stay at any time. We denote the vector of capacities
C ∈ N|V∗|0 . Nodes are sometimes called vertistops, and are
called vertiports if they have larger capacity. We assume that,
due to operational reasons, the UAVs are only allowed to
travel along the links specified in E∗.

Since the travel time depends on external factors such as
weather conditions, we assume that the travel time for each
link is not exact, but rather bounded by a time interval. That
is, for each link i ∈ E∗, we let xi ∈ R+ denote the maximum
travel time for the link and xi ∈ R+ denote the minimum
travel time. It is assumed that xi ≥ xi > 0 for all i ∈ E∗.

Definition 1 (Urban Air Mobility (UAM) Network):
An urban air mobility (UAM) network N is a tuple
N = (G∗, C, x, x) where G∗, C, x, x are as defined above.

To model the demand of UAV flights in a UAM network
N = (G∗, C, x, x), we assume that every flight originates
from a leaf node and is ultimately destined for the central
node v0 and stops at intermediate nodes along the way.
Therefore, a demand is a pair (o, f) where o ∈ {v1, . . . , vL}
is the origin leaf node and f ∈ R+ is the latest time the UAV
must arrive (i.e., land) at the destination v0, i.e., its deadline.
Once a UAV has landed at node vl,k, it is assumed to block
the landing spot for a fixed waiting time wl,k ∈ R+, and
thus the available capacity for other UAV landing at that node
decreases by one during this time. For ease of exposition, we
assume the waiting time is uniform at all intermediate nodes
and possibly different at the destination node. Thus, we take
wl,k = wI if k > 0 and wl,k = w if k = 0 for some fixed
wI > 0, w > 0. The arrival time of the demand is specified
instead of the departure time because it is assumed more
important for the users to get to their destination on time,
rather than to depart at a specific time. The challenge, defined
below, is to determine departure times for all demands to
ensure UAVs arrive by the specified time.

A set of demands for a UAM network is denoted D =
{(oj , fj)}j∈J where J is a finite or countably infinite
index set. We assume throughout that the deadlines fj



are uniformly lower bounded, but they need not be upper
bounded; in particular, D might be an infinite collection
of demands corresponding to, e.g., regular daily or weekly
flights planned into the future. Whenever D is an infinite
set, the deadlines fj must be unbounded. To coordinate the
operation of the UAVs, a centralized scheduler assigns to
each demand a journey consisting of a sequence of edges
from origin to destination and a departure time. Formally,
for each j ∈ J , a journey for demand (oj , fj) ∈ D with
oj = vlj for lj ∈ {1, . . . , L} is a pair ({elj ,k}

Klj+1

k=1 , δj). For
the star-branch networks considered here, the sequence of
edges {elj ,k}

Klj+1

k=1 is uniquely determined by the leaf node
oj = vlj for the demand, but the departure time δj ∈ R is
a decision variable of the scheduler. For safety reasons, a
UAV must be able to land immediately upon arrival at an
intermediate node or the destination. The latest arrival time
at some intermediate node kI ∈ {1, 2, . . . ,Klj + 1} along
the journey, denoted aj,kI , is then given by

aj,kI = δj +

kI∑
k=1

xelj ,k + (kI − 1)wI , (1)

i.e., aj,kI is the departure time plus the upper bound of the
time interval for the first kI links with the time spent at each
intermediate node. Further, the time interval that the UAV
will potentially block a landing spot at node kI is given by

Mj,kI =

[
δj +

kI∑
k=1

xelj ,k
+ (kI − 1)wI , aj,kI + wlj ,kI

]
.

We let aj = aj,Klj+1 and Mj =Mj,Klj+1. The task, then,
is to assign to each demand a journey such that capacity
constraints and arrival deadlines are satisfied. Given a set of
demands D, a corresponding set of journeys is denoted S and
called a schedule provided that these constraints are satisfied.
Given a finite or countably infinite set of demands, it is
always possible to construct a schedule, but if the demands
are infinite, depending on the arrival time requirements, the
departure times may need to be scheduled arbitrarily far in
advance. When this is not the case, we say the schedule and
demands are feasible. The notions are formally defined next.

Definition 2: Given a set of demands D =
{(oj , fj)}j∈J , a corresponding set of journeys
S = {({elj ,k}

Klj+1

k=1 , δj)}j∈J is a schedule for D if
aj ≤ fj for each j ∈ J ; the number of UAVs at a node
never exceeds capacity, i.e., for all v ∈ V and all t ≥ 0,∑

j:dj=v

1 (t;Mj) ≤ Cv

where the notation 1(·; ·) is an indicator such that
1(t; [a, b]) = 1 if t ∈ [a, b] and 1(t; [a, b]) = 0 otherwise;
and, as a mild technical requirement, in any finite time
interval, only a finite number of UAVs depart. A schedule is
feasible if there exists some t ∈ R such that δj ≥ t for all
j ∈ J , and a collection of demands D is feasible if there
exists a feasible schedule for D.

If D is a finite collection of demands, then there always
exists a feasible schedule since departure times may be
scheduled as early as needed to satisfy capacity constraints
and desired arrival times. However, it is still desirable to
optimize the schedule so that departure times are as late
as possible subject to these constraints; this is the topic of
Section IV. When D is an infinite collection of demands,
then D may or may not be feasible. We assume that the
number of deadlines set in the time interval [τ, τ + T ] will
be finite if T < ∞ and the average number of deadlines
in [τ, τ + T ] remains constant for T → ∞, for any τ ∈ R.
Fundamental limitations on the feasibility of D is the subject
of the following Section III.

III. FUNDAMENTAL LIMITS

In this section, we present fundamental limits for schedul-
ing demands in a UAM network. We first consider a star-
branch network with no intermediate nodes, i.e., a star
network. We call this a local network because it can be
interpreted as a local portion of a larger network where we
study only incoming flights to a particular node. In this case,
V = {v0, v1 . . . , vL} and there are L edges E = {(vi, v0) |
1 ≤ i ≤ L}. Hence each journey will only consist of one
link. We label edge (vi, v0) simply as edge i. We generalize
our analysis to general star-branch networks in Section III-B.

Suppose a set of demands D = {(oj , fj)}j∈J is given
for the local network, then a schedule for D will be on the
form S = (ej , δj)j∈J . This since in the local network, each
journey will only consist of one link, i.e., ej = i if and only
if oj = vi, i ∈ {1, . . . , L}.

We introduce a cumulative departure function in time
interval [t1, t2] as ∆v(t1, t2) : R2 → N for all v ∈ V\{v0}
so that ∆v(t1, t2) is the number of UAVs departing from
node v in the time interval [t1, t2], i.e.,

∆v(t1, t2) = |{j ∈ J | oj = v and δj ∈ [t1, t2]}| .

Given the cumulative departure function, we define the
long-term average departure rate rv at node v ∈ V\{v0} as

rv := lim
T→+∞

1

T
∆v(τ, τ + T ) , ∀τ ∈ R.

In the same manner, we introduce a cumulative arrival
function Γv(t1, t2) : R2 → N as the cumulative number of
UAVs that depart from origin v and arrive at the destination
in the time interval [t1, t2], i.e., Γv(t1, t2) = |{j ∈ J | oj =
v and vehicle arrives in [t1, t2]}|.

For any schedule, the average departure and the arrival
rates must be equal, as stated next.

Lemma 1: Consider a local UAM network N with a set
of demands D. For any feasible schedule S and for all nodes
v ∈ V \ {v0}, it holds that the average arrival rate from the
node equals the average departure rate from the node, i.e.,

rv = lim
T→+∞

1

T
Γv(τ, τ+T ) , ∀v ∈ V\{v0} ,∀τ ∈ R . (2)

The proof of Lemma 1 is straightforward follows directly
from the conservation of the total number of UAVs in the



network. In the same manner, it follows that for any schedule,
the arrival rate must satisfy

rv = lim
T→+∞

1

T

∑
j∈J |oj=v

1 (fj ; [τ, τ + T ]) ,

∀v ∈ V \ {v0} ,∀τ ∈ R . (3)

A. Necessary and Sufficient Condition for a Feasible Sched-
ule in a Local Network

In the following theorem, we obtain a necessary and
sufficient condition for the existence of a feasible schedule
for a local network when the set of demands D is infinitely
large, so that we can say immediately if there exists any
feasible schedule. This will hence provide fundamental limits
for how large demands a local network can handle.

Theorem 1: Consider a local UAM network N with
Cv0 ≥ 1. An infinite set of demands D is feasible if and
only if ∑

1≤i≤L

rvi · (xi − xi + w) ≤ Cv0 , (4)

where rvi is as given in (2) for all vi ∈ V\{v0}1.
Theorem 1 is based on the two lemmas below, which focus

on the special case when Cv0 = 1. We can then extend this
special case to prove Theorem 1.

Lemma 2: Consider a local UAM network N with Cv0 =
1. If an infinite set of demands D is feasible, then∑

1≤i≤L

rvi · (xi − xi + w) ≤ 1 , (5)

where rvi is as given in (2) for all vi ∈ V\{v0}.
Lemma 3: Consider a local UAM network N with Cv0 =

1 and a countably infinite set of demands D = {(oj , fj)}j∈J
with fj > t0 for all j ∈ J = N. If

∑
1≤i≤L rvi · (xi − xi +

w) ≤ 1, then there always exists M ∈ R such that∑
1≤i≤L

Γvi(t0, t0 + T ) · (xi − xi + w)− fT ≤M (6)

for any T > 0, where fT = max{j∈J |fj≤T}{fj} is the last
deadline that needs to be achieved before T . In particular,
this implies that the set of demands D is feasible.

B. Extension to General Star-Branch Network

We now show that the necessary condition of Theorem 1
extends to general star-branch networks with intermediate
nodes between origins and the destination in the following
corollary.

Corollary 1: Consider a UAM network N = (G∗, C, x, x)
where G∗ is a star-branch graph with L leaf nodes and thus
L branches, ({el,k}Kl+1

k=1 , {vl,k}Kl+1
k=0 ), for all l = 1, . . . , L.

If a countably infinite set of demands D is feasible, then

rvl ≤ r̂vl = min
1≤kI≤Kl+1

r̂l,kI , ∀1 ≤ l ≤ L (7)

1Due to space limitation, the full proofs of Theorem 1, Lemma 2 and 3
and Corollary 1 are omitted.

where r̂l,kI is obtained by the equation below:

Cvl,kI =
( kI∑
k=1

xel,k −
kI∑
k=1

xel,k + wl,kI

)
· r̂l,kI . (8)

The observation that the above theoretical guarantees
extend to the class of star-branch networks significantly
expands the practical usefulness of these results. This is
because, in many practical scenarios, a UAM network is
reasonably decomposed as several independent star-branch
networks. For example, during the morning commute, UAVs
will travel to a central city from regional exurbs with possible
stops at intermediate suburbs. This is the situation studied in
the case study below. During the evening commute, reverse
travel from the city to the exurbs is modeled as independent
star-branch networks, each with a single branch.

IV. OPTIMIZATION PROBLEM

When the set of demands D is finite, as mentioned above
in Section II, it is always possible to find a feasible schedule.
However, some feasible schedules are less desirable if, e.g.,
they require the UAVs to depart too early so that the UAVs ar-
rive too far ahead of the corresponding deadlines. Therefore,
we propose an optimization program that seeks to minimize
the gaps between the arrival times and the corresponding
deadlines while remaining feasible in this section. We denote
the order that journeys land at the destination v0 as z, ordered
according to arrival aj , using the index γ ∈ {1, . . . , |J |}.
For each j ∈ J , zjγ is an indicator for whether the journey
j is scheduled as the γ-th arrival or not: zjγ = 1 means
that the assigned UAV is the γ-th flight entering v0 while
zjγ = 0 if not. In particular, consider a star-branch network
N∗ = (G∗, C, x, x) and the optimization program

min
δj ,aj ,z

j
γ

∑
j∈J

(fj − δj)

aj ≤ fj ∀j ∈ J (9)

aj = δj +

Kl+1∑
k=1|vl=oj

xel,k +KlwI ∀j ∈ J

(10)
|J |∑
γ=1

zjγ = 1 ∀j ∈ J (11)∑
j∈J

zjγ = 1 ∀1 ≤ γ ≤ |J | (12)

∑
j∈J

zjγ · aj + w ≤
∑
j∈J

zjγ+Cv0
·
[
δj +

Kl+1∑
k=1|vl=oj

xel,k

+KlwI

]
∀1 ≤ γ ≤ |J | (13)∑

j|oj=vl

zjγ · aj ≤
∑

j|oj=vl

zjγ+1 · (aj −
1

r̂vl
)

∀1 ≤ γ ≤ |J |, ∀1 ≤ l ≤ L (14)

δj , aj ∈ R, zjγ ∈{0, 1}, ∀j ∈ J , ∀1 ≤ γ ≤ |J | . (15)

In the optimization problem above, the objective function
minimizes the sum of the difference between the deadline



and the departure time of each trip. Constraint (9) requires
each UAV to arrive by the deadline of the corresponding
trip. The constraint (10) defines the latest arrival time for
the journey j as the departure time δj plus the longest time
it may need to travel along the journey. As depicted in
(11), each journey is assigned exactly one order index to
enter the destination and (12) shows that each order index
must be occupied by one journey. Since all journeys stay at
destination v0 for a fixed time w, we implicitly assign the
parking slots to the journeys by their order index γ cyclically.
The constraint (13) says for each parking slot, the earliest
time that the UAV (γ+Cv0) can enter the parking slot must
be later than the latest time that UAV γ leaves the slot (the
latest time that a UAV leaves the slot is the latest time that
the UAV will arrive at the slot plus the time it will stay at the
node). Similarly, the constraint (14) guarantees the rate that
the UAVs entering each branch l will not exceed its maximal
allowed average departure rate r̂vl . Lastly, (15) provides the
range for all the variables. Notice that time 0 is arbitrarily
fixed so that, in particular, δj < 0 and aj < 0 are possible.

Even though the constraints (13) and (14) contain the
multiplication of two decision variables, we can reformulate
them into a set of affine constraints because zjγ is binary
and aj is bounded for any 1 ≤ γ ≤ J and j ∈ J . Hence,
the problem can be transformed into a mixed-integer linear
program (MILP). Although the optimization problem after
transformation is still non-convex, it can be efficiently solved
using solvers such as Gurobi [20] or Cplex [21].

V. NUMERICAL CASE STUDIES

A recent report by INRIX suggests that a UAM local
network traveling to the city of Atlanta from three exurbs,
Alpharetta, Kennesaw and Buford, has the potential to offer
significant time savings compared to ground transportation
during peak travel times [6], and we construct our case
study from data reported in [6]. Table I reports plausible
travel time intervals for UAVs to travel from the three exurbs
to Atlanta and the corresponding time savings versus peak
hours. The fourth column of Table I is taken from [6],
and the third column is inferred from the fourth column
and free flow travel times obtained via Google Maps. We
further assume there is an intermediate vertistop a at a suburb
between Kennesaw and Atlanta, and intermediate vertistops
b and c at suburbs between Buford and Atlanta, as shown in
Fig. 1. The corresponding travel time intervals are labeled
beside the links. Conforming to the local network model
in Section III, we take Atlanta as node number 0 and the
exurbs as numbered in Table I. This is therefore a star-branch
network with 3 branches, where v2,1 = a, v3,1 = b and
v3,2 = c.

We now present the case study with demand sets D =
{(oj , fj)}j∈J defined subsequently. Note that the destination
for all demands is Atlanta, node v0. We consider a time
horizon of three hours (T = 180 minutes) and assume there
are two landing spots in Atlanta, but only one landing spot at
vertistops a, b and c, i.e., Cv0 = 2, Ca = Cb = Cc = 1. Each
UAV stays at the intermediate vertistops along its path for

TABLE I
TIME NEEDED FOR UAVS AND CARS TO TRAVEL TO ATLANTA FROM

DIFFERENT ORIGINS IN RUSH HOURS

Node Origin UAV Travel Time (min) UAV Savings Versus
Car Travel Time (min)

1 Alpharetta [x1, x1] = [20, 29] −41
2 Kennesaw [x2, x2] = [25, 32] −19
3 Buford [x3, x3] = [31, 41] −32
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Fig. 2. The detailed optimal schedule of the second case study with
[h1, h2, h3] = [4, 4, 19]. The red, blue and orange bars represent the
reserved time slots for UAVs from v1, v2 and v3, respectively. We label an
“ID” above each bar to track the UAVs. The diamond represents the arrival
deadline of a journey; the solid-color bar represents the time interval that
the UAV is scheduled to arrive. The UAV will then stay at the node for
time wI (at intermediate node) or w (at v0) after arrival (represented by
the lightly shaded bar).

wI = 1 minute and at the Atlanta vertiport for w = 5 minutes
after landing. The optimization problem (15) is solved in
MATLAB using Gurobi with YALMIP toolbox to obtain a
schedule S = {({el,k)}Kl+1

k=1 , δj)}j∈J where l ∈ {1, 2, 3}
and Kl = l−1. By solving the optimization problem (15), we
minimize

∑
j∈J (fj−δj), the sum of the difference between

the deadline and the departure time of each trip.
In the case study, we assume the number of UAVs that

need to arrive at Atlanta during the three hour horizon
varies across the three origins and is denoted h1, h2, h3.
Deadlines are set at regularly intervals, i.e., if origin vi is
tasked with sending hi UAVs to Atlanta, the deadlines are⌊

180
1+hi

· k + 0.5
⌋

, k = 1, 2, . . . , hi. We set the deadlines as
integers for a shorter convergence time when running the
algorithm. We limit the total number of UAVs under consid-
eration, since the complexity of the non-convex optimization
problem in Section IV will lead to a long computational time
when there are too many UAVs. The example we present
below takes around two hours for scheduling. In addition
to considering a fixed three hour time window, we also
consider the case when the demands are repeated indefinitely,
providing a countably infinite set of demands.

Fig. 2 shows the optimal schedule computed as in Section
IV for [h1, h2, h3] = [4, 4, 19]. The “ATL 1” and “ATL 2”
nodes represents the two parking slots at Atlanta node (v0).
The red bars indicate UAVs from v1, blue for v2 and orange
for v3. For illustrative purposes, we denote each UAV with
a unique ID index, which is labeled above the bar of the
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Fig. 3. The detailed optimal schedule along branch 3. UAVs traveling
along branch 3 stop at intermediate nodes b, c and v0. The dotted lines
are showing that connected bars are the schedules of the same journey at
different intermediate nodes and destination.

corresponding schedule. In this case,
∑3
l=1

hl
180 ·(xbrl−xbrl+

w) > 2 so that, if we consider an infinitely repeating demand,
Theorem 1 implies that this infinite set of demands is not
feasible. As we can verify from the figure, no matter how
we adjust the schedule while satisfying all the constraints
(9)–(15), we require more parking slots or more than 180
minutes to fit in all schedules for all the journeys. As a
result, when we repeat the demand in [0, T ] periodically,
there does not exist any feasible schedule for the infinitely
repeating demand. Fig. 3 shows the schedules of the UAVs
along branch 3.

On the other hand, with the same total number of UAVs,
if the number of departing UAVs is instead [h1, h2, h3] =
[4, 19, 4], then

∑3
l=1

hl
180 · (xbrl − xbrl + w) < 2, satisfying

the necessary condition for feasibility, and it can be verified
that a feasible schedule (not shown) is obtained from our
proposed scheduling algorithm in this case.

VI. CONCLUSIONS

In this paper, we studied the problem of scheduling in
UAM networks with uncertain travel time. One main chal-
lenge is that nodes in a UAM network, unlike in a ground
transportation network, have limited parking spaces. As a re-
sult, a schedule for each UAV in the network has to be made
before it takes off to ensure that a parking space is available
upon arrival. We incorporated these challenges as constraints
in a UAM network scheduling model for a class of star-
branch networks consisting of multiple origins, a destination,
and intermediate nodes between the origins and destination.
We then developed necessary and sufficient conditions for
a feasible schedule to exist in the special case of local star
networks with no intermediate nodes between origins and the
destination, and we extended the necessary condition to the
general class of star-branch networks. Further, for general
star-branch networks, we presented a mixed integer program
to obtain an optimal and feasible schedule. We demonstrate
these theoretical and computational results on a numerical
case study for a UAM network in the city of Atlanta.

In future work, we plan to further generalize the class
of networks we consider, allowing for possibly multiple

routes between origins and the destination. We also plan to
investigate how dynamic scheduling can be incorporated in
the model to allow replanning in the event of unforeseen
disruptions such as one or more UAVs needing to reroute or
land due to, e.g., adverse weather conditions.
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