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 a b s t r a c t

Motivated by the omnipresence of hierarchical structures in many real-world applications, this study 
delves into the intricate realm of bi-level games, with a specific focus on exploring local Stackelberg 
equilibria as a solution concept. While existing literature offers various methods tailored to specific 
game structures featuring one leader and multiple followers, a comprehensive framework providing 
formal convergence guarantees appears to be lacking. Drawing inspiration from sensitivity results for 
nonlinear programs and guided by the imperative to maintain scalability and preserve agent privacy, 
we propose a decentralized approach based on the projected gradient descent with the Armijo stepsize 
rule. By the virtue of the Implicit Function Theorem, we establish convergence to a local Stackelberg 
equilibrium for a broad class of bi-level games. Moreover, for quadratic aggregative Stackelberg games, 
we also introduce a decentralized warm-start procedure based on the consensus alternating direction 
method of multipliers addressing the initialization issues reported in our previous work. Finally, we 
provide empirical validation through two case studies in smart mobility, showcasing the effectiveness 
of our general method in handling general convex constraints, and the effectiveness of its extension 
in tackling initialization issues.

© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In the realm of strategic decision-making, games with the 
inherent leader-follower structure have emerged as one of the 
fundamental frameworks to model the interplay between agents 
on multiple levels of hierarchy. Each lower-level agent typically 
competes to solve a personalized optimization problem shaped by 
the leader’s decision variable and the actions of other followers. 
In turn, the leader seeks to minimize its objective while adhering 
to the equilibrium constraints imposed by the lower-level game, 
creating a hierarchical, bi-level, structure. Depending on the de-
gree of interaction flexibility between the two levels, and with the 
pivotal works on games formalizing the concepts of Stackelberg 
(SG) (Von Stackelberg, 1952) and their broader format, Reverse 
Stackelberg games (RSG) (Ho, Luh, & Muralidharan, 1981; Ho, Luh, 
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& Olsder, 1982), various real-world problems in the domain of 
energy management (Aussel, Brotcorne, Lepaul, & von Nieder-
häusern, 2020; Motalleb, Siano, & Ghorbani, 2019), operational 
optimization (Hirose & Matsumura, 2019; Zardini, Lanzetti, Guer-
rini, Frazzoli, & Dörfler, 2021) and transportation (Groot, Zaccour, 
& de Schutter, 2017; Maljkovic, Nilsson, & Geroliminis, 2023a; 
Maljkovic et al., 2023c) gained interest from the perspective of 
computing a no-regret solution for all participants.

In the context of pricing problems, it has been observed that 
for bi-level games with a certain lower-level structure, the con-
cept of RSG can be effectively employed to incentivize the global 
optimum of the leader (Maljkovic et al., 2023a; Staňková, Olsder, 
& Bliemer, 2011). Specifically, formulating the leader’s action, 
i.e., a dynamic pricing strategy, as a functional, rather than a 
real-valued vector, can help reshape the game among followers 
to produce an equilibrium that aligns with the minimizer of 
the leader’s objective. This leads to a natural follow-up ques-
tion: can a connection be established between these dynamic 
policies and the fixed, real-valued vector strategies commonly 
used in day-ahead markets and bidding mechanisms (Toubeau, 
Bottieau, De Grève, Vallée, & Bruninx, 2021; Wang et al., 2023)? 
In general, this is not straightforward, as limiting the leader’s 
influence to merely parameterizing the lower-level game con-
strains their ability to reshape key mathematical properties of 
the lower-level problem such as convexity or smoothness. In fact, 
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Schematic sketch of the problem setup. Each of the N followers aims 
to optimize the personal objective Ji under the parametrized local constraints 
xi ∈ Xi(xi, π ). The followers communicate with the leader through the commu-
nication hub that is used as a medium to collect the locally computed Jacobians 
Dπt x∗i  in every update step of the leader’s action.

we enter the domain of mathematical programs with comple-
mentarity constraints (MPCC) (Scheel & Scholtes, 2000), which 
often violate standard constraint qualifications and are therefore 
challenging to solve using conventional off-the-shelf solvers. If 
application permits centralized computation, then MPCCs can 
typically be tackled by iterative relaxations of the equilibrium 
constraints (Hoheisel, Kanzow, & Schwartz, 2011) or by recasting 
them into an instance of a mixed integer program (Fortuny-
Amat & McCarl, 1981; Kleinert, Labbé, Ljubić, & Schmidt, 2021). 
However, the former approach is prone to numerical instabil-
ities (Scheel & Scholtes, 2000), while the success of the latter 
heavily relies on the scalability of the underlying mixed-integer 
solver (Jara-Moroni, Pang, & Wächter, 2018). If local constraints 
are also involved, then the need to preserve privacy and ensure 
scalability often calls for customized decentralized approaches 
that leverage the specific communication infrastructure between 
agents (Fabiani, Tajeddini, Kebriaei, & Grammatico, 2022; Kebriaei 
& Iannelli, 2018).

Looking from a different angle, the sensitivity results for non-
linear programs (Pedregosa, 2016a; Subotić, Hauswirth, & Dörfler, 
2022; Wang, Xu, Perrault, Reiter, & Tambe, 2022), along with the 
success of gradient-descent-based methods in hyper-parameter 
optimization (Bengio, 2000; Pedregosa, 2016b; Rajeswaran, Finn, 
Kakade, & Levine, 2019), hint at the possibility of differentiating 
the Karush–Kuhn–Tucker (KKT) conditions of the followers’ best-
response optimization problems, in an attempt to estimate how 
the attained lower-level equilibrium reacts to a change in the 
leader’s action. In Grazzi, Franceschi, Pontil, and Salzo (2020), the 
sensitivity of the solution to a parametrized fixed-point equation 
representing the lower level of a bi-level optimization prob-
lem is thoroughly analyzed. From a game-theoretic perspective, 
this concept is appealing because Nash equilibria can often be 
computed in a similar way, given standard structural assump-
tions about the game (Paccagnan, Gentile, Parise, Kamgarpour, & 
Lygeros, 2019). To the best of our knowledge, Grontas et al. (2024) 
is the only work to explore this idea in the context of equilibrium 
seeking in specific classes of bi-level games.

Similar to Fabiani et al. (2022), Hu and Ralph (2007), Kulkarni 
and Shanbhag (2015), due to inherent non-convex nature of 
the bi-level problem arising from the equilibrium constraints, 
we also focus on computing local Stackelberg equilibria as the 
solution concept. In fact, this paper builds on our preliminary 
2

work presented in Maljkovic et al. (2023c), but extends it to a 
general framework, depicted in Fig.  1, that can also account for 
any type of non-quadratic and non-aggregative games. Moreover, 
in contrast to existing methods (Fabiani et al., 2022; Grontas et al., 
2024), we allow for any leader-parametrized form of the follow-
ers’ constraint sets that satisfies simple regularity assumptions. 
This enables us to address scenarios commonly found in bi-level 
pricing problems (Golrezaei, Jaillet, Cheuk Nam Liang, & Mirrokni, 
2023; Mayer & Steinhardt, 2016), which do not conform to the 
structural requirements of Fabiani et al. (2022), Grontas et al. 
(2024). For the proposed framework, we show how the computa-
tion of Jacobians describing the influence of the leader’s strategy 
on the attained variational Nash Equilibrium (Maljkovic et al., 
2023c) of the lower-level game can be performed locally by each 
of the followers. We start by briefly discussing the relationship 
between the RSG dynamic policies and the static ones used in 
the SG setup and continue by rigorously tackling the require-
ments of the Implicit Function Theorem (Dontchev & Rockafellar, 
2009). Although these requirements are often assumed to be met 
in the existing literature, they can be violated even in games 
with relatively simple structures, as demonstrated in the case 
study of quadratic, aggregative games with polytopic constraints 
in Maljkovic et al. (2023c). In this context, we also address the 
reported initialization issue arising from the fact that in each 
iteration we differentiate the KKT conditions of an optimization 
problem equivalent to the standard best-response one. With that 
in mind, the main contributions of this paper can be summarized 
as follows:

• We propose a distributed, first-order-like, iterative method 
based on explicit fulfillment of the Implicit Function The-
orem requirements. By ensuring a local improvement of 
the leader’s objective at each iteration, we provide formal 
convergence guarantees for a broad class of bi-level games.
• For a subclass of quadratic, aggregative, Stackelberg games 

linearly parametrized by the decision variable of the leader, 
we propose a decentralized warm-start procedure based on 
the alternating direction method of multipliers (ADMM). In 
line with the distributed nature of the main algorithm, we 
compute a feasible leader’s strategy that yields an interior 
point variational Nash Equilibrium of the lower-level game, 
i.e., renders no local inequality constraint active.
• For a subclass of quadratic, aggregative games with only 

equality constraints, we establish sufficient conditions for 
linear convergence and provide additional discussion points 
for other cases.
• We test the proposed method in an adaptation of the case 

study from the domain of smart mobility previously ana-
lyzed in Maljkovic et al. (2023c). Firstly, by introducing the 
so-called budget constraints parametrized by the leader’s 
decision variable, we demonstrate the effectiveness of the 
main procedure for the bi-level games with general convex 
constraints. Then, by going back to the setup in Maljkovic 
et al. (2023c), we illustrate the effectiveness of the warm-
start procedure in alleviating the initialization issues.
Finally, we numerically evaluate the robustness of the pro-
posed method in scenarios where the followers do not 
perfectly reach the Nash Equilibrium for a given value of the 
leader’s decision variable. This demonstrates the algorithm’s 
potential for future extension into an equilibrium-seeking 
mechanism.

The paper is outlined as follows: the rest of this section is 
devoted to introducing some basic notation. In Section 2, we 
introduce the general bi-level setup, discuss the connection be-
tween the Stackelberg and Reverse Stackelberg games, postulate 
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the main standing assumptions, and formally introduce the prob-
lem. In Section 3, we revise and generalize the decentralized 
method for computing the local Stackelberg equilibrium previ-
ously outlined in Maljkovic et al. (2023c). Section 4 then focuses 
on the subclass of quadratic, aggregative Stackelberg games and 
presents the proposed warm-start procedure. Finally, we con-
clude the paper with Sections 5 and 6 where we present the 
numerical examples and propose some ideas for future research.
Notation: Let R denote the set of real numbers, R+ the set of non-
negative reals, and Z+ the set of non-negative integers. Let 0m and 
1m denote the all zero and all one vectors of length m respectively, 
and Im the identity matrix of size m × m. For a finite set A we 
let |A| be the cardinality of A. Furthermore, if A is a finite set 
of vectors xi, we let x := col(xi)i∈A be their concatenation. For 
x ∈ Rn, we let Dg(x) ∈ Rn×n denote a diagonal matrix whose 
elements on the diagonal correspond to vector x. If A is a set of 
k matrices Ai ∈ R

m×n, then blkdiag{Ai}i∈A ∈ R
km×kn denotes the 

corresponding block-diagonal matrix and vstack(Ai)i∈A ∈ Rkm×n

denotes their vertical concatenation. For A ∈ Rn×n, A ≻ 0(⪰
0) is equivalent to xTAx > 0(≥ 0) for all x ∈ Rn×n. We let 
A ⊗ B denote the Kronecker product between two matrices. For 
a differentiable function f (x) : Rn

→ Rm, we let Dxf ∈ Rm×n

denote the Jacobian matrix of f  defined as (Dxf )ij :=
∂ fi
∂xj

. If f (x)
is a real-valued function, i.e., m = 1, we adopt ∇xf := Dxf ∈
Rn. Finally, for a set-valued mapping F : Y ⇒ X , gph(F) :=
{(y, x) ∈ Y × X | x ∈ F(y)} denotes its graph.

2. Theoretical preliminaries

Throughout the paper, we consider a bi-level game with a set 
of N + 1 agents I = I ∪ {L}, where L represents the leading 
agent and each i ∈ I represents one of the N followers. In this 
setup, the leading agent is the first one to choose an action π from 
its feasible set P , to which all N followers will respond at once 
with a personal decision vector xi from their feasible set Xi(π )
that is in their best interest. If mF ∈ N represents the dimension 
of the follower’s decision space, we assume Xi(π ) in the form of 
Xi(π ) := {xi ∈ RmF | g inq

i (xi, π ) ≤ 0minq,i ∧ geq
i (xi, π ) = 0meq,i}, 

where minq,i,meq,i ∈ N denote the number of inequality and 
equality constraints encompassed in Xi(π ). If mL ∈ N represents 
the dimension of the leader’s action, the nature of the leader’s 
strategy can lead to two types of games in general:

• Reverse Stackelberg Games (RSG): where the leader’s strat-
egy π ∈ P is a map π : RNmF → RmL ;
• Stackelberg Games (SG): where the leader’s strategy is a 

fixed real vector, π ∈ P ⊆ RmL .

In any case, we refer to the phase of choosing the optimal xi ∈
Xi(π ) as the Lower-level game and the process of choosing the 
optimal leader’s strategy knowing that the followers will play a 
best-response as the Upper-level game. Furthermore, we define 
the joint strategy of all followers as x := col(xi)i∈I ∈ X (π ) and 
for every i ∈ I, we define x−i := col(xj)j∈I\i ∈ X−i(π ), such that 
X (π ) :=

∏
i∈I Xi(π ) and X−i(π ) :=

∏
j∈I\i Xj(π ).

2.1. Lower-level game

The followers choose their strategies in an attempt to min-
imize personal objectives Ji(xi, x−i, π ) by optimally responding 
to other players’ strategies. In addition to defining the leader’s 
influence on the functional form of the followers’ objectives, 
adopting specific general forms for the constraint sets Xi(π ) al-
lows us to capture different paradigms studied in the literature. 
For instance, in Stackelberg games, we can structurally distin-
guish between two types of constraint sets X (π ). The first type 
i

3

includes inequality constraints parametrized by π that take a 
polytopic form, i.e., g inq

i (xi, π ) = Wixi + Wπ
i π + bi, where Wi, 

Wπ
i , and bi have appropriate dimensions. This structure is more 

prevalent in the literature, as it often models restricted access to 
shared resources by the followers (Grontas et al., 2024; Nabetani, 
Tseng, & Fukushima, 2011). The second type involves bi-linear 
constraints, i.e., g inq

i (xi, π ) = xTi Wiπ + bi, and is commonly 
used in bi-level pricing problems (Golrezaei et al., 2023; Mayer & 
Steinhardt, 2016) to represent players’ limited personal budgets. 
Notably, much of the existing literature (Fabiani et al., 2022; 
Grontas et al., 2024) relies on polytopic constraint sets, making 
their proposed methods less applicable to problems involving 
budget constraints.

In any case, in this paper we keep a general, π-induced, 
lower-level game G0(I;π ) in the form of N coupled optimization 
problems, i.e., G0(I;π ) := {G0

i (π, x−i)|i ∈ I}, where each follower 
aims to solve: 

G0
i (π, x−i) :=

{
min

xi∈RmF
Ji (xi, x−i, π)

s.t. xi ∈ Xi(π )

}
. (1)

For such a game, a viable no-regret solution for all players is 
given by the concept of a Nash equilibrium, which is formally 
introduced in Definition  1. 

Definition 1 (Nash Equilibrium). For any leader’s strategy π ∈
P , a joint strategy x∗ ∈ X  is a Nash Equilibrium (NE) of the 
game G0(I;π ) if, for all i ∈ I and all xi ∈ Xi(π ), it holds that 
Ji
(
x∗i , x

∗

−i, π
)
≤ Ji

(
xi, x∗−i, π

)
.

For a particular π ∈ P , it is rarely possible to find a closed-
form characterization of the full set of NE in a general setup. 
Therefore, we postulate standard assumptions about the struc-
ture of G0(I;π ) that allow us to focus on the variational Nash 
Equilibria (v-NE) as a solution concept of the lower-level game.

Standing Assumption 1.  For every i ∈ I and any π ∈ P , 
x−i ∈ X−i, the cost Ji(xi, x−i, π ) is convex and continuously differ-
entiable in xi. Moreover, it is continuous in x ∈ X (π ) and the sets 
Xi(π ) are nonempty, compact, convex and satisfy Slater’s constraint 
qualification.

Strictly speaking, under Standing Assumption  1, for every i ∈
I, the Nash Equilibrium strategy x∗i ∈ Xi(π ) is the solution of 
the best-response optimization problem (1) for x∗

−i, i.e., G0
i (π, x

∗

−i). 
The optimality of x∗i ∈ Xi(π ) is guaranteed if and only if x∗i  solves 
the KKT system of equations li(zi, π | x∗−i) = 0, where the vector 
mapping li is defined for every zi = (xi, λi, νi) as 

li
(
zi, π | x∗−i

)
:=

⎡⎣ ∇xiLi (zi, π)
Dg (λi) g

inq
i (xi, π)

geq
i (xi, π)

⎤⎦ , (2)

with the Lagrangian Li(zi, π ) = Ji(xi, x∗−i, π ) + λTi g
inq
i (xi, π )

+ νTi g
eq
i (xi, π ), and λi ∈ R

minq,i
+  and νi ∈ Rmeq,i  representing 

the dual variables associated with the inequality and equality 
constraints. Under Standing Assumption  1, if some ̂zi = (x̂i, λ̂i, ν̂i), 
with feasible x̂i and λ̂i, satisfies li

(
ẑi, π | x∗−i

)
= 0, then ẑi is 

the optimizer of (1). On the other hand, based on Facchinei and 
Pang, Prop.1.4.2, Standing Assumption  1 also ensures that a joint 
strategy x ∈ X (π ) is a NE if and only if it solves a variational 
inequality problem, hence providing a closed-form description 
of the lower-level game’s solution set. Namely, if F (x, π ) :=
col(∇xi Ji(xi, x−i, π ))i∈I denotes the pseudo-gradient of G0(I;π ), 
we can adopt the following assumption about the followers.

Standing Assumption 2.  For any π ∈ P , the agents i ∈ I play a 
joint strategy x ∈ N0(π ), where N0(π ) is the set of all v-NE of the 
game G0(I;π ), given by N0(π ) := {x ∈ X (π ) | (y − x)T F (x, π ) ≥
0, ∀y ∈ X (π )}.



M. Maljkovic, G. Nilsson and N. Geroliminis Automatica 178 (2025) 112352
2.2. Upper-level game

On the upper level, finding the optimal strategy π ∈ P
imposes solving a minimization problem of the leader’s objective 
JL : RNmF × P → R. Instances of both SG and RSG can be 
compactly written as: 

G1 :=

{
min
π∈P

JL
(
x∗, π

)
s.t. (x∗, π) ∈ gph (N0) ∩ (R

mF × P)

}
. (3)

In general, the optimal π in G1 is a possibly non-unique solu-
tion (Maljkovic et al., 2023c, Corr. 1) to a non-convex problem 
that requires the ability to understand the leader’s influence on 
the position of the lower-level game’s v-NE. Moreover, depending 
on the properties of F (x, π ), the lower-level game could admit 
multiple NE for a particular parametrization. In this study, we 
restrict ourselves to cases where G0(I;π ) admits a unique NE for 
any π ∈ P . Hence, we state the following assumption, common 
in existing literature (Bianchi, Belgioioso, & Grammatico, 2022; 
Paccagnan, Gentile, Parise, Kamgarpour, & Lygeros, 2016), that 
ensures the existence and uniqueness of the lower-level game’s 
v-NE (Facchinei & Pang, Th. 2.3.3). 

Standing Assumption 3.  For any π ∈ P , the pseudo-gradient 
F (x, π ) is strongly monotone in x ∈ X (π ).

Concerning the nature of the leader’s decision variable, it is 
evident that SG represents a distinct instance of RSG, wherein 
the leader’s strategy assumes a constant function. This limits the 
flexibility to incentivize a certain NE of the lower-level game, 
as the leader’s strategies in the form of feedback policies offer 
a means to directly shape the functional form of the followers’ 
optimization problems. Moreover, with many real-world applica-
tions requiring different notions of fairness, solving a SG can be 
considered arguably more challenging. To elucidate this contrast, 
we look at the following example for a specific class of games, 
referred to as quadratic aggregative games in Maljkovic et al. 
(2023a), Paccagnan, Kamgarpour, and Lygeros (2016). 

Definition 2 (Quadratic Aggregative Games). Let the leader’s ob-
jective be JL = 1

2σ (x)
TPLσ (x) + qTL σ (x), where σ (x) =

∑
i∈I xi. 

Moreover, let the lower-level game G0(I;π ) be defined by

Ji(xi, x−i, π ) =
1
2
xTi Pixi + xTi Qiσ (x−i)+ rTi xi + xTi Siπi ,

where σ (x−i) = σ (x)− xi, πi ∈ R
mF , π = col(πi)i∈I , the matrices 

PL, Pi, Qi, Si and vectors qL, ri are all real valued, PL ≻ 0, for every 
i ∈ I, Pi, Si ≻ 0, and the Standing assumptions 1, 2 and 3 all hold.

If one regards the game in Definition  2 as a Reverse Stackel-
berg game, it suffices to choose the leader’s strategy as a mapping 
of the form 

πi(xi, x−i) = S−1i

[
1
2
Pixi + Qiσ (x−i)+ ri

]
, (4)

where Pi = PL − Pi, Qi = PL − Qi and ri = qL − ri, so 
that the leader’s objective and the objectives of the followers 
satisfy JL(xi, x−i) − JL(x̃i, x−i) = Ji(xi, x−i) − Ji(x̃i, x−i) for any fixed 
x−i ∈ X−i and any two xi, x̃i ∈ Xi. This implies that due to (4), 
the leader’s objective JL becomes the exact potential (Monderer 
& Shapley, 1996) of the lower-level game by definition. Conse-
quently, this guarantees that the minimizer of JL aligns with the 
v-NE of G0(I;π ), which can, in this case, be computed using 
a decentralized, iterative, fixed-point method as in Maljkovic 
et al. (2023a, 2023c), Paccagnan, Kamgarpour, and Lygeros (2016). 
Conversely, if one regards the game in Definition  2 as an instance 
of Stackelberg games, such manipulation is no longer possible. If 
4

xR represents the NE obtained when applying (4) in the RSG setup, 
one might naively try to plug back xR into (4) to obtain a static 
pricing vector πR

i = πi(xRi , x
R
−i) and use it in the setup of a SG. 

However, in a general case, this does not yield a viable solution, 
as illustrated in the following proposition. 

Proposition 1.  Let a bi-level game be defined as in Definition  2 
such that Xi(π ) = RmF  for all i ∈ I. Moreover, let the mapping 
π = col(πi)i∈I be given by πi : R

NmF → RmF  and let (4) yield 
xR ∈ X (π ). If πR

i = πi(xRi , x
R
−i), then utilizing πR

i  in a SG gives rise 
to a NE equal to xR if and only if PLxRi = PixRi .

Proof.  It suffices to look at the KKT systems li(zi, πi | xR−i) = 0, 
given by (2), for the SG and RSG scenarios. Namely, after apply-
ing (4), the derivative of the ith follower’s Lagrangian evaluated 
at xRi  satisfies PLxRi + PLσ (xR−i) + qL = 0. On the other hand, if πR

i
is applied in the context of SG, xRi  will remain the NE of G0(I;π )
if and only if 12 (PL + Pi)xRi + PLσ (xR−i) + qL = 0 holds. Hence, xR
remains the NE of G0(I;π ) if and only if 1

2PLx
R
i =

1
2Pix

R
i , which 

does not always hold. □

Therefore, even the Stackelberg games that exhibit favor-
able mathematical properties such as the one in Definition  2 
pose significant difficulties in computing the leader’s strategy. As 
previously mentioned in the introduction, if the nature of the 
application allows centralized computation, one can formulate 
an MPCC that can be recast into an instance of mixed-integer 
linear or quadratic problems (Kleinert et al., 2021) using the 
big-M reformulation (Fortuny-Amat & McCarl, 1981) as demon-
strated in Fochesato, Cenedese, and Lygeros (2022), Hobbs (2001), 
Maljkovic, Nilsson, and Geroliminis (2023b). Apart from suffering 
from poor scalability (Jara-Moroni et al., 2018), such computation 
could breach the privacy of the lower-level agents in many real-
world applications, particularly in terms of sharing information 
about personal constraint sets Xi.

With that in mind, the focus of this paper is entirely redirected 
towards the decentralized computation of the leader’s strategy 
in Stackelberg games. Before formally introducing the problem 
setup, we highlight that the proposed modeling framework is par-
ticularly well-suited for applications such as day-ahead markets, 
bidding mechanisms, transportation pricing, and energy markets, 
where upper-level updates typically occur over extended time 
intervals. For systems with rapidly changing dynamics, special 
care needs to be taken to ensure that the lower-level equilibrium 
is attained before each upper-level update.

2.3. Problem formulation — Stackelberg games

Owing to the inherently non-convex nature of the hierarchical 
problem arising from the equilibrium constraints, we concentrate 
on instances of (3) that are guaranteed to admit a solution. Based 
on (Luo, Pang, & Ralph, 1996, Th.1.4.1), this is ensured by posing 
the following mild assumptions concerning the leader’s objective. 

Standing Assumption 4.  The leader’s objective function JL : RNmF×

P → R is coercive and continuously differentiable in both x∗ and π .
We can now focus on finding the leader’s strategy π ∈ P

corresponding to the concept of local Stackelberg equilibria (l-
SE) previously studied in Fabiani et al. (2022), Hu and Ralph 
(2007), Kulkarni and Shanbhag (2015), that is guaranteed to exist 
due to Standing Assumption  4. For the sake of completeness, we 
reintroduce this concept formally in Definition  3. 

Definition 3 (Local Stackelberg Equilibrium). Let G1 be a Stackel-
berg game as in (3). A pair 

(
x̂∗, π̂

)
∈ gph N ∩ RmF × P  is a 
( 0) ( )
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local Stackelberg equilibrium of G1 if there exist open neighbor-
hoods Ωx̂∗  and Ωπ̂  of x̂∗ and π̂ respectively, such that 
JL
(
x̂∗, π̂

)
≤ inf

(x∗,π)∈gph(N0)∩Ω
JL
(
x∗, π

)
, (5)

where Ω := Ωx̂∗ × (P ∩Ωπ̂ ).

Interestingly, restricting ourselves to the framework of l-SE 
implies that finding the leader’s strategy in (3) reduces to finding 
the local optimum of JL as a function of π . Namely, under Standing 
Assumption  1 and 3, for any π ∈ P , we have that |N0(π )| =
1. This means that to find the l-SE, we need to find π̂ and its 
neighborhood Ωπ̂ , since the condition (5) will always be fulfilled 
for x̂∗ = N0(π̂ ) and the open ball of radius R given by Ωx̂∗ :={
x ∈ X |

x− x̂∗
 < R

}
, where R > maxx∈N̂ (

Ωπ̂
) x− x̂∗

 and 
N̂ (Ωπ̂ ) =

⋃
π∈Ωπ̂

N0(π ).
To summarize, in the following sections we will focus on 

designing an iterative, decentralized, gradient descent-based al-
gorithm that leverages the guarantees provided by the Implicit 
Function Theorem (Dontchev & Rockafellar, 2009) concerning the 
continuous differentiability of JL(x∗(π ), π ) at the current π value. 
However, before delving deeper into the details, we establish the 
regularity of the leader’s optimization problem through Standing 
Assumption  5.

Standing Assumption 5.  The leader’s constraint set P ⊆ RmL  is 
nonempty, compact and convex, and for every i ∈ I, each element 
of g inq

i (xi, π ) and geq
i (xi, π ) is continuously differentiable in both xi

and π . For every x∗
−i ∈ X−i(π ), every component of the derivative 

of the Lagrangian associated with the KKT system li(zi, π | x∗−i) = 0, 
i.e., ∇xiL(zi, π ), is continuously differentiable at both xi and π .

3. Decentralized computation of the local Stackelberg equilib-
rium

To tackle the problem of computing the local Stackelberg 
equilibrium, the initial step involves introducing the idea of Pro-
jected Gradient descent incorporating the Armijo rule. This con-
cept, along with the Implicit Function Theorem, will form the 
foundation of our method.

3.1. Projected gradient descent with Armijo rule

We start by adopting the projected gradient descent method 
with ’Armijo step-size rule along the projection arc’ explored 
in Bertsekas (1999). To update π at iteration t ∈ N, we first define 
the mapping π+ : P × R+ → P as

π+ (πt , s) := ΠP

[
πt − s

dJL
(
x∗π , π

)
dπ

⏐⏐⏐⏐⏐
π=πt

]
,

where ΠP  is the projection operator on the leader’s constraint 
set for some particular step size s ∈ R+ and x∗π  emphasizes the 
dependence of the Nash Equilibrium on π . Let β , s and δ be fixed 
scalars such that β, δ ∈ (0, 1) and s > 0. Moreover, let lt ∈ Z≥0
be the smallest non-negative integer such that for st = β lt s

JL
(
x∗πt , πt

)
− JL

(
x∗
π+(πt ,st )

, π+ (πt , st)
)
≥

≥ δ

(
dJL
(
x∗π , π

)
dπ

⏐⏐⏐⏐⏐
π=πt

)T (
πt − π

+ (πt , st)
) (6)

holds. Then, the leader’s strategy is updated as 
πt+1 = π

+(πt , st ) . (7)

Under Standing Assumption  5, to observe that lt is well defined, 
i.e., a stepsize st will be found after a finite number of trials 
based on the test given by (6), it suffices to invoke the following 
adaptation of Bertsekas (1999, Prop. 2.3.3). 
5

Lemma 1 (Proposition 2.3.3 of Bertsekas (1999)). Let the set P
satisfy Standing Assumptions  4 and 5, JL(x∗π , π ) be continuously 
differentiable on P and δ ∈ (0, 1). Then, for every π ∈ P , 
there exists sπ > 0 such that JL(x∗π , π ) − JL(x∗π+(π,s), π

+(π, s)) ≥
δ∇π JL(x∗π , π )

T (π − π+(π, s)) holds for every s ∈ [0, sπ ].
Therefore, the complexity of each update step boils down to 

ensuring that JL(x∗π , π ) is continuously differentiable, i.e., showing 
that the gradient of the leader’s objective with respect to the 
current strategy given by 
dJL
(
x∗π , π

)
dπ

=
∂ JL
(
x∗π , π

)
∂π

+ DT
πx
∗

π

∂ JL
(
x∗π , π

)
∂x∗π

, (8)

is well-defined. In that case, if s > sπt  we have lt = 0, other-
wise the testing procedure (6) terminates after lt = ⌈logβ ( sπs )⌉
iterations.

The challenging aspect of computing (8) stems from the re-
quirement to compute the Jacobian Dπx∗π , i.e., from having to 
estimate how the NE of G0(I;π ) reacts to variations in π . This 
is particularly challenging as in general there exists no closed-
form functional description of the connection between π and the 
obtained NE x∗π . Therefore, we aim to achieve this by virtue of 
the Implicit Function Theorem. Namely, with the constraint sets 
Xi(π ) being local, and knowing that

DT
πx
∗

π

∂ JL
(
x∗π , π

)
∂x∗π

=

∑
i∈I

DT
πx
∗

π,i
∂ JL
(
x∗π , π

)
∂x∗π,i

,

we can compute Dπx∗π  in a distributed manner such that each 
follower remains in charge of only computing the personal Jaco-
bian Dπx∗π,i. The Jacobians are then communicated to the leader 
as illustrated in Fig.  1, who, in return, calculates
dJL
(
x∗π , π

)
dπ

=
∂ JL
(
x∗π , π

)
∂π

+

∑
i∈I

DT
πx
∗

π,i
∂ JL
(
x∗π , π

)
∂x∗π,i

before updating its decision via (7). To obtain individual Dπx∗π,i, 
we leverage the fact that the computed lower-level NE has to 
solve the best-response optimization problem of the correspond-
ing follower. Namely, to tackle the requirements of the Implicit 
Function Theorem, for every i ∈ I, we formulate an optimization 
problem equivalent to (1) and directly apply the theorem to the 
problem’s KKT mapping li

(
zi, π | x∗−i

)
. To ease the notation in 

the following sections, we will suppress the subscript denoting 
dependence on π when it is clear from the context and refer to 
the Jacobian of follower i ∈ I as Dπx∗i .

3.2. Differentiating the KKT conditions

For a given π ∈ P and the corresponding unique v-NE x∗ ∈
X (π ) of the lower-level game, the Implicit Function Theorem 
allows us to locally compute Jacobians Dπx∗i  by applying it to the 
KKT mapping li

(
zi, π | x∗−i

)
. For every i ∈ I, let the set-valued 

map Ξ∗i : P ⇒ Zi, with Zi := R
mF × R

minq,i
≥0 × Rmeq,i , be 

Ξ∗i (π ) :=
{
zi ∈ Zi

⏐⏐li (zi, π | x∗−i) = 0
}
. (9)

Moreover, let Θ =
[
1,minq,i

]
∩ N, and the set of non-strongly 

active inequality constraints Γ π
i (x∗i , λ

∗

i ) be

Γ π
i (x∗i , λ

∗

i ) :=
{
j ∈ Θ | λj∗i = 0 ∧ g inq

i (x∗i , π )j = 0
}
,

where g inq
i (xi, π )j is the jth inequality constraint and λj∗i  repre-

sents the corresponding dual variable of the best-response op-
timization problem. With a slight abuse of notation, the Implicit 
Function Theorem from Dontchev and Rockafellar (2009) adapted 
to our problem reads as the following theorem. 
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q

Theorem 1 (Theorem 1.B1 of Dontchev and Rockafellar (2009)).
Let Standing Assumptions  1–5 hold and x∗ ∈ X (π ) be the unique 
NE of the game G0(I;π ) for some π ∈ P . Furthermore, let the 
best-response optimization problem of each agent i ∈ I be defined 
via (1), its KKT mapping li(zi, π | x∗−i) via (2), and Ξ∗i (π ) be defined 
via (9). If li(ẑi, π | x∗−i) = 0, Γ π

i (x̂i, λ̂i) is empty and Dzi li(ẑi, π |
x∗
−i) is non-singular for some ẑi, then the solution mapping Ξ∗i (π )
has a single-valued localization z∗i  around ẑi = (x̂i, λ̂i, ν̂i), that is 
continuously differentiable in a neighborhood Ωπ  of π , with the 
Jacobian satisfying for every π ∈ Ωπ

Dπ z∗i (π) = −D
−1
zi li

(
ẑi, π | x∗−i

)
Dπ li

(
ẑi, π | x∗−i

)
,

where Dzi li
(
ẑi, π | x∗−i

)
 and Dπ li

(
ẑi, π | x∗−i

)
 satisfy

Dzi li :=

⎡⎣ Dxi∇xiLi, DT
xig

inq
i , DT

xig
eq
i

Dg
(
λ̂i
)
Dxig

inq
i , Dg

(
g inq
i

)
, 0

Dxig
eq
i , 0, 0

⎤⎦

Dπ li :=

⎡⎣ Dπ∇xiLi

Dg
(
λ̂i
)
Dπg

inq
i

Dπg
eq
i

⎤⎦ .

The triplet ẑi = (x∗i , λ
∗

i , ν
∗

i ), with x∗i , λ∗i  and ν∗i  being the 
solution of G0

i (π, x
∗

−i) = minxi∈Xi(π ) Ji(xi, x
∗

−i, π ), satisfies li(ẑi, π |
x∗
−i) = 0. However, based on the Implicit Function Theorem, 
extracting the derivative Dπx∗i  from Dπ z∗i  requires that the matrix 
Dzi li(ẑi, π | x

∗

−i) be invertible. The necessary condition for this to 
hold is that the set Γ π

i (x∗i , λ
∗

i ) be empty. Namely, observe that 
Γ π
i (x∗i , λ

∗

i ) ̸= ∅ implies that there would exist a zero row in 
Dzi li(ẑi, π | x∗

−i), hence making it singular. On the other hand, 
the sufficient condition for the Implicit Function Theorem to hold 
directly depends on the structure of the game resulting from 
the nature of the application and the NE computed prior to the 
leader’s strategy update step. To ensure this, in Section 3.3, we 
reorganize the constraints of the original best-response optimiza-
tion problem to form an equivalent one whose KKT map li(zi, π |
x∗
−i) yields invertible Dzi li(zi, π | x

∗

−i).

3.3. Equivalent best-response optimization problem

For any π ∈ P , let the unique v-NE of the lower-level game 
G0(I;π ) be x∗ ∈ X (π ). For every follower i ∈ I, its NE strategy 
x∗i ∈ Xi(π ) explicitly provides information on what inequality 
constraints are active for a particular leader’s strategy. Let Ai(x∗i )
represent the set of all active inequality constraints at x∗i , i.e., 

Ai
(
x∗i
)
:=
{
j ∈

[
1,minq,i

]
∩ N | g inq

i (x∗i , π )j = 0
}
. (10)

Consequently, let the complement of Ai
(
x∗i
)
 be 

A†
i

(
x∗i
)
=
([
1,minq,i

]
∩ N

)
\ Ai

(
x∗i
)
. (11)

If 
⏐⏐Ai

(
x∗i
)⏐⏐ = mact,i > 0, then we can define

g inq
i (xi, π ) = col(g inq

i (xi, π )j)j∈Ai
(
x∗i
), (12)

g inq
i

(xi, π ) = col(g inq
i (xi, π )j)j∈A†

i
(
x∗i
), (13)

that effectively split the inequality constraints into a set of ac-
tive and inactive ones. This allows us to formulate an auxil-
iary best-response optimization problem equivalent to (1) whose 
corresponding set Γ π

i (x∗i , λ
∗

i ) is empty.

Lemma 2.  Let Standing Assumptions  1–5 hold and x∗ ∈ X (π ) be 
the unique NE of the game G0(I;π ) for some π ∈ P . Moreover, 
let Ai(x∗i ) and A

†
i (x
∗

i ) be defined as (10) and (11) and |Ai(x∗i )| =
m ̸= 0. If g inq(x , π ) and g inq(x , π ) are given by (12) and (13), 
act,i i i i i

6

then x∗i ∈ Xi(π ) solves the best-response problem G0
i (π, x

∗

−i) given 
by (1) if and only if it solves the surrogate problem 

G
0
i

(
π, x∗

−i

)
:=

⎧⎪⎨⎪⎩
min

xi∈RmF
Ji
(
xi, x∗−i, π

)
s. t. g inq

i
(xi, π ) ≤ 0minq,i−mact,i

geq
i (xi, π ) = 0meq,i+mact,i

⎫⎪⎬⎪⎭ , (14)

where geq
i (xi, π ) =

[
geq
i

T (xi, π ), g inq
i

T
(xi, π )

]T .
Proof.  Observe that both problems are convex, so it suffices to 
look at their KKT optimality conditions. If x∗i ∈ Xi(π ) solves (1) for 
some π , then ∇xi [Ji(xi, x

∗

−i, π ) + λ
T
i g

inq
i (xi, π ) + νTi g

eq
i (xi, π )] = 0

is satisfied for x∗i  and some feasible λ∗i  and ν∗i . We can partition 
λ∗ into λi and λi and rewrite ∇xi [Ji(xi, x

∗

−i, π ) + λ
T
i g

inq
i

(xi, π ) +

νTi g
eq
i (xi, π ) + λ

T
i g

inq
i (xi, π )] = 0. However, this is exactly the 

KKT stationarity condition of the surrogate best-response prob-
lem (14) for νTi = [νTi , λ

T
i ]. Since the primal and dual feasibility 

conditions are equivalent, the proof is completed. □

We can now postulate the following results regarding the 
differentiability of the KKT mapping li

(
zi, π | x∗−i

)
. 

Theorem 2.  Let Standing Assumptions  1–5 hold and x∗ ∈ X (π )
be the unique NE of the game G0(I;π ) for some π ∈ P . Let the 
auxiliary best-response optimization problem G0

i (π, x
∗

−i) be defined 
as in Lemma  2, ẑi = (x∗i , λ

∗

i , ν
∗

i ) be its solution and Dzi li(ẑi, π | x
∗

−i)
be defined as in Theorem  1. If Dxi∇xiLi(ẑi, π ) ≻ 0 and Dxig

eq
i (xi, π )

has full row rank for x̂i, then the matrix Dzi li(ẑi, π | x
∗

−i) associated 
with G0

i (π, x
∗

−i) is invertible and the Jacobian Dπx∗i  is given by

Dπx∗i = −Σ
−1
1 [Σ3 −Σ

T
2 (Σ2Σ

−1
1 ΣT

2 )
−1(Σ2Σ

−1
1 Σ3 −Σ4)] ,

where Σ1 = Dxi∇xiLi, Σ2 = Dxig
eq
i , Σ3 = Dπ∇xiLi and Σ4 =

Dπg
eq
i  are all evaluated at ẑi, π, x∗−i.

Proof.  We start by noting that g inq
i

(x∗i , π ) < 0 guarantees that 
λ∗i = 0 due to complementary slackness, and hence Γ π

i = ∅. In 
order to prove invertibility of Dzi li(ẑi, π | x

∗

−i), we invoke Lemma  3 
listed in the Appendix. Namely, we can partition Dzi li(ẑi, π | x

∗

−i)
into blocks M1, M2, M3 and M4, evaluated at ẑi, π and x∗

−i, such 
that M1 = Dxi∇xiLi(zi, π ),

MT
2 =

[
Dxig

inq
i

(xi, π )
Dxig

eq
i (xi, π )

]
, M3 =

[
0

Dxig
eq
i (xi, π )

]
,

M4 =

[
Dg(g inq

i
(xi, π )) 0
0 0

]
.

For ẑi, π, x∗−i, the Schur complement of M1 is given by

Sh (M1) :=

[
Dg(g inq

i
) 0

⋆ −Dxig
eq
i M−11 DT

xig
eq
i

]
.

Since g inq
i

(x∗i , π ) encompasses inactive inequality constraints, we 
have that Dg(g inq

i
(x∗i , π )) ≺ 0. Similarly, because Dxi∇xiLi(ẑi, π ) ≻

0 and Dxig
eq
i (xi, π ) has full row rank, we have that Dxig

eq
i M−11 DT

xig
e
i

≻ 0, making Sh(M1), and hence Dzi li(ẑi, π | x∗
−i), nonsingular. 

Moreover, based on Theorem  1, we have Dπx∗i = −M1Σ3 −

M2[0T ,ΣT
4 ]

T , where Lemma  3 gives M1 = Σ−11 (I − ΣT
2 (Σ2Σ

−1
1

ΣT
2 )
−1Σ2Σ

−1
1 ) and M2 = −Σ

−1
1

[
⋆, −ΣT

2 (Σ2Σ
−1
1 ΣT

2 )
−1
]
. Direct 

computation of the right-hand side completes the proof. □

Theorem  2 offers two general conditions that can be used 
to assess the invertibility of Dzi li(ẑi, π | x

∗

−i) and, consequently, 
establish the well-posedness of the Jacobian Dπx∗i . This essen-
tially involves confirming the typical structural characteristics of 
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Algorithm 1 Finding leader’s optimal strategy
1: Input: γ , β , s, δ, ε, T
2: Output: π
3: π0 = Initialize();
4: for t ← 0 to T  do
5:  x∗πt = ComputeVariationalNE(πt );
6:  for i ∈ I do ▷ In parallel
7:  Define g inq

i
(xπt ,i, πt ), g

eq
i (xπt ,i, πt );

8:  Obtain Dπx∗πt ,i using Theorem 1 on G0
i ;

9:  end for
10:  Leader:
11:  dJL(·)

dπ =
∂ JL(·)
∂π
+
∑

i∈I DT
πx
∗

i
∂ JL(·)
∂x∗i

;

12:  st = ArmijoStep
(
β, s, δ, πt ,

dJL(·)
dπ

)
;

13:  πt+1 = π
+ (πt , st);

14: end for

the followers’ cost functions and constraint sets for commonly 
encountered instances of Stackelberg games. On the other hand, 
the closed form of the Jacobian is a direct consequence of Lemma 
3 and shows that the Jacobian retains constant functional form 
during the segments of the leader’s update procedure with the 
same sets of active inequality constraints. In the following section, 
we will further discuss the applicability of Theorem  2 in particular 
cases. However, before we proceed, we will first present the 
formal convergence guarantees for the more general case.

Theorem 3.  Let the Stackelberg game be defined as (3) under 
Standing Assumptions  1–5. At every update step t ∈ N of the 
leader, let x∗t ∈ X (πt ) be the unique v-NE of the lower level 
game and the surrogate best-response optimization problem of the 
ith follower be defined as in Lemma  2. If the sequence {πt} gen-
erated by the projected gradient descent method defined by (6) 
and (7) fulfills the conditions of Theorem  2, then it holds that 
limt→+∞ JL

(
x∗πt+1 , πt+1

)
− JL

(
x∗πt , πt

)
= 0 and every limit point of 

{πt} is stationary.

Proof.  First, note that based on the Armijo rule, the sequence 
{JL(x∗πt , πt )}∞t=1 is monotonically nonincreasing. Because JL

(
x∗π , π

)
is continuous in zT = [(x∗π )T , π T

] and ∪π∈PX (π )× P is compact, 
there exists Jmin

L ∈ R such that JL
(
x∗π , π

)
≥ Jmin

L  for all z ∈
∪π∈PX (π )× P . Since the sequence 

{
JL
(
x∗πt , πt

)}∞
t=1 is monoton-

ically nonincreasing and bounded, it converges to a finite value 
implying limt→+∞[JL(x∗πt+1 , πt+1) − JL

(
x∗πt , πt

)
] = 0. Since The-

orem  2 guarantees that JL
(
x∗π , π

)
 is continuously differentiable 

at every π ∈ P , every limit point of {πt} is stationary based 
on Bertsekas (1999, P2.3.3). □

The complete iterative procedure for finding a l-SE is out-
lined in Algorithm 1. The Jacobian computations required for the 
upper-level update can be fully parallelized, making the complex-
ity of this step independent of the number of players. As such, 
the distributed nature of the process is completely driven by the 
subproblem of computing the v-NE for a given leader’s strategy. It 
is known that for lower-level games with a Lµ-strongly monotone 
and Ll-Lipschitz pseudo-gradient, the v-NE can be found as a 
fixed-point of the projected pseudo-gradient mapping (Facchinei 
& Pang; Maljkovic et al., 2023a; Paccagnan et al., 2019; Paccagnan, 
Kamgarpour, & Lygeros, 2016), with a linear convergence rate 
depending on Lµ and Ll (Bauschke & Combettes, 2017). It is 
important to note that in the current setting, Algorithm 1 does 
not offer convergence guarantees when an equilibrium-seeking 
mechanism is used, meaning that the lower-level NE must be 
7

fully attained before each update of the leader’s decision. In 
Section 5, however, we present a numerical analysis suggesting 
that Algorithm 1 can still identify the optimal leader’s strategy 
in certain scenarios, even when the inner procedure for comput-
ing the lower-level Nash equilibrium is truncated after a fixed 
number of iterations.

In terms of the convergence rate of Algorithm 1, within the 
context of classical optimization, projected gradient descent al-
gorithms using the Armijo step-size rule typically exhibit a con-
vergence rate that is no better than linear  (Bertsekas, 1999, Ch. 
2.3). Therefore, in more general bi-level setups with equilibrium 
constraints as described by (3), it becomes increasingly difficult to 
guarantee a specific convergence rate due to the lack of a closed-
form relationship between the lower-level v-NE and the leader’s 
decision. Interestingly, for a special case of games introduced in 
Definition  2, involving only affine equality constraints, we can 
establish such a connection under certain common structural 
assumptions, and hence formally prove linear convergence.

In essence, Section 4 is entirely devoted to Quadratic Aggrega-
tive games with general polytopic constraints that are in line 
with Definition  2. Apart from demonstrating linear convergence 
in a restricted scenario, for the general case with P that is also 
polytopic, we show how the communication hub, i.e., a central 
aggregator entity discussed in Maljkovic et al. (2023a), Paccagnan 
et al. (2019), Paccagnan, Kamgarpour, and Lygeros (2016), also 
supports designing a decentralized warm-start procedure that 
may help mitigate issues arising from an unfavorable initial value 
of the leader’s action π0 ∈ P . 

4. Quadratic aggregative Stackelberg games

We focus on a particular instance of games in Definition  2 
where πi = πj = π for all i, j ∈ I, and the lower-level agents 
minimize a quadratic cost of the form 

Ji =
1
2
xTi Pixi + xTi Qiσ (x−i)+ rTi xi + xTi Siπ , (15)

under π-parametrized constraints given by g inq
i (xi, π ) = Gi(π )xi−

bi(π ) and geq
i (xi, π ) = Ai(π )xi−bi(π ). In light of Theorem  2, if x∗ ∈

X (π ) denotes the v-NE of the lower level game and |Ai(x∗i )| ̸= 0, 
we proceed to formulate the surrogate best-response optimiza-
tion problem by letting Gi(π ) ∈ Rmact,i×mF  be a matrix whose 
rows are the rows of Gi(π ) listed in Ai(x∗i ). Moreover, we let Gi(π )
encompass all the remaining rows of Gi(π ) and decompose the 
vector hi(π ) into hi(π ) and hi(π ) such that Gi(π )x∗i = hi(π ) and 
Gi(π )x

∗

i < hi(π ). For the cost (15), the conditions of Theorem  2 
ensuring the invertibility of

Dzi
li =

⎡

⎣

Pi G
T

i
(π ) A

T

i
(π )

0 Dg
(

G
i
(π )x∗

i
− h

i
(π )

)

0

Ai(π ) 0 0

⎤

⎦ ,

related to G0
i (π, x

∗

−i) reduce to Dxi∇xiL(ẑi, π ) = Pi ≻ 0 and 
ensuring that Ai(π ) = [AT

i (π ), G
T
i (π )]

T  is full row rank. Note that 
the latter can be easily accounted for during the construction step 
of the surrogate best-response problem. When designing Ai(π ), 
it suffices to exclude the active inequality constraints for which 
there already exists a linearly dependent equality constraint.

As mentioned earlier, quadratic aggregative games allow us to 
tackle the initialization problem to a certain extent. Our previous 
work (Maljkovic et al., 2023c) empirically demonstrated that by 
adjusting the π0 ∈ P value used to initiate the iterative update 
procedure of the leader, we can give rise to local Stackelberg 
equilibria of varying quality with respect to the value of the 
leader’s objective. While it is possible to sample the leader’s 
action space and repeat the complete iterative process multiple 
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Fig. 2. Illustrative example of the lower-level NE evolution when the projected 
gradient descent algorithm is initialized by π a

0 , i.e., such that the NE is on the 
boundary of the feasible set Xi (red), and by πb

0 , i.e., such that the NE is in 
the interior (orange). (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

times to find a better solution, opting for initial values π0 that im-
mediately lead to a v-NE that causes certain inequality constraints 
to become active can unnecessarily hinder the subsequent steps 
of the procedure. As illustrated in Fig.  2, since the Jacobian is 
calculated with respect to the surrogate best-response problem, 
poorly choosing the initial value π0 means that we effectively 
start with a lower-level game where each follower has more 
equality constraints than originally postulated. Although later on 
we do not have precise control over the trajectory of the leader’s 
iterative procedure, the structure of the analyzed games allows 
to increase the flexibility of the algorithm by at least providing 
an adequate point π0 in the first iteration of the algorithm. More 
specifically, if P and Xi(π ) are polytopes, with Xi(π ) being im-
plicitly governed by a scaled linear combination of π and xi, then 
we can design a decentralized method for computing a feasible 
point π0, should such a point exist, that results in a v-NE of the 
lower-level game that renders no inequality constraint active.

Finally, when the sets Xi(π ) encompass only equality con-
straints, then we can show that Algorithm 1 achieves linear 
convergence for strongly convex leader objectives.

4.1. Decentralized initialization procedure for agents with polytopic 
actions spaces

As mentioned earlier, a decentralized initialization procedure 
can be devised for specific configurations of the agents’ constraint 
sets. Before we go deeper into details about the procedure, we 
summarize all structural requirements on P and Xi(π ) in the 
following assumption. 

Assumption 1.  Sets P ⊂ RmL  and Xi(π ) ⊂ RmF  are given by 
P := {π | Aππ = bπ∧Gππ ≤ hπ } and Xi(π ) := {xi | Aixi+Aπi π =
bi ∧ Gixi + Gπi π ≤ hi} that are assumed to be bounded.

To find a π0 ∈ P that yields an interior point v-NE x∗ ∈ X (π0), 
we are essentially interested in ensuring that such a π0 entails 
existence of a positive slack vector δi such that Gix∗i + Gπi π0 +

δi ≤ hi. However, as we hope to avoid imposing information 
exchange regarding the personal constraint sets of the followers, 
we anticipate a consensus-based mechanism to compute π0.

For every i ∈ I, we look at the KKT conditions of the best-
response optimization problem and define ψi ∈ R

mψi , with mψi =

NmF + mL + meq,i + minq,i and ψi := [x̃Ti , p̃T
i , ν

T
i , δ

T
i ]

T , where 
x̃i = col(x̃ji)j∈I ∈ X (π0) denotes the ith follower’s local copy of 
the complete v-NE x∗, p̃i ∈ P being the local copy of the vector 
π0, νi being the Lagrangian multiplier associated with equality 
constraints of the best response optimization problem and δi is 
the slack vector that we are looking for. Furthermore, let Λ , 
x̃i

8

Λp̃i , Λδi  and Λi be selection matrices such that Λx̃iψi = x̃ii, 
Λp̃iψi = pi, Λδiψi = δi and Λiψi = [x̃Ti , p̃

T
i ]

T . We can now 
postulate a necessary and sufficient feasibility test based on linear 
programming.

Theorem 4 (Internal v-NE Feasibility Check).  Let the Stackelberg 
game be defined as (3) under Standing Assumptions  1–5, the struc-
tural Assumption  1 and objective functions given by (15). There 
exists a π0 ∈ P such that the corresponding v-NE, x∗ ∈ X (π0), 
of the lower-level game G0(I;π0) renders no inequality constraint 
active if and only if there exists ε > 0 such that the following linear 
optimization problem has a solution 

minimize
{ψi}i∈I, β

−

∑
i∈I

1TΛδiψi

subject to Λiψi − β = 0 , (16a)

[Wi STi AT
i 0]ψi + ri = 0 , (16b)

(AiΛx̃i + Aπi Λp̃i )ψi = bi , (16c)

(GiΛx̃i + Gπi Λp̃i +Λδi )ψi ≤ hi, (16d)

−Λδiψi ≤ −ε1 , (16e)
Aπ Λp̃iψi = bπ ,
Gπ Λp̃iψi ≤ hπ

 where Wi = [Pi, 1T
N−1 ⊗ I].

Proof.  Firstly, observe that the dummy variable β ∈ Rmβ , 
where mβ = NmF + mL, ensures through (16a) that all the 
followers have equal local copies of the pricing vector and the 
v-NE. Moreover, since ε > 0, (16d) and (16e) ensure that any 
optimal solution of this problem renders no inequality constraint 
active. Due to complementarity slackness, we search for solutions 
where the dual variables satisfy λi = 0. Hence, (16b) represents 
the stationarity condition of the KKT system for the convex best-
response optimization problem. By adding (16c) and (16d), we 
form a complete set of KKT optimality conditions, so any optimal 
β corresponds to a π0 for which the v-NE is an interior point. □

Firstly, we note that (16) could have been posed as a feasibility 
problem for simplicity. However, we opt for the proposed func-
tional form as it places the attained v-NE further away from the 
boundaries. Clearly, the optimal solution β∗ encodes a viable π0
and its corresponding v-NE, i.e., β∗ = [(x∗π0 )

T , π T
0 ]. Thanks to the 

separable objective function and constraints of the optimization 
problem (16), we can preserve the privacy of the followers and 
solve (16) in a decentralized fashion through the consensus al-
ternating direction method of multipliers (ADMM) (Boyd, Parikh, 
Chu, Peleato, & Eckstein, 2011). Here, β acts as a global variable 
to be shared among all the followers and is the only one that 
needs to be updated in a centralized manner, e.g., in case studies 
presented in Maljkovic et al. (2023a, 2023c), Paccagnan et al. 
(2019), Paccagnan, Kamgarpour, and Lygeros (2016), this could 
be served by the same central entity required for computing the 
v-NE. If we let the polytope Ωψi := {ψi ∈ R

mψi | M1
i ψi =

v1i ∧ M2
i ψi ≤ v

2
i } encode all the constraints of (16) except (16a), 

then the augmented Lagrangian of (16) is

Lρ({ψi}, β, {yi}) =
∑
i∈I

−1TΛδiψi + IΩψi (ψi)

+ yTi (Λiψi − β)+
ρ

2
∥Λiψi − β∥

2
2 ,

where IΩψi (ψi) denotes the indicator function and ρ > 0 is 
an a priori chosen parameter. The consensus ADMM consists of 
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repeating the following three steps 
ψk+1

i = argmin
ψi∈Ωψi

Lρ(ψi, {ψ
k
j }j∈I\{i}, β

k, {yki }),

βk+1
= argmin

β∈R
mβ

Lρ({ψk+1
i }, β, {y

k
i }),

yk+1i = yki + ρ(Λiψ
k+1
i − βk+1).

(17)

Due to the separability of the augmented Lagrangian, solving the 
N convex quadratic optimization problems for updating individ-
ual ψi can be done in parallel. The same holds for updating the 
dual variables yi. On the other hand, the unconstrained quadratic 
minimization problem to be solved to obtain βk+1 yields

βk+1
=

1
N

[
1
ρ

∑
i∈I

yki +
∑
i∈I

Λiψ
k+1
i

]
,

and requires that the followers communicate their updated local 
estimate of π0 and the corresponding v-NE, both encoded in 
ψk+1

i , to the central aggregator who will then update the consen-
sus variable β . Formal convergence guarantees are given in the 
following theorem. 

Theorem 5.  Let ∆k
i = Λiψ

k
i − β

k denote the residual at each 
iteration of the consensus ADMM given by (17). If Ai is full row rank 
then ∆k

i → 0 when k→∞.

Proof.  We aim to directly invoke Chen, Sun, and Toh (2017, Th 
4.1). Namely, for Chen et al. (2017, Th 4.1) to hold, we first ob-
serve that the extended, real-valued function f =

∑
i∈I −1

TΛδiψi+

IΩψi (ψi) is closed, proper and convex. Secondly, we need to make 
sure that the solution set of (16) is bounded. For this, it suffices 
to prove that Ωψi  is bounded as then β = Λiψi is bounded 
as well. Clearly, both x̃i ∈ X (π ) and p̃i ∈ P are bounded due 
to imposed assumptions. From (16b), we have AT

i νi = γi for 
γi := −ri − Wix̃i − STi p̃i. If γ j

i  denotes the jth element of the 
vector, then for every j ∈ [1,mF ] ∩ N there exist γ j

i
, γ

j
i ∈ R such 

that γ j
i
≤ γ

j
i ≤ γ

j
i since both x̃i and p̃i are bounded. If we set 

γmin
i = minj γ

j
i
 and γmax

i = maxj γ
j
i, then γmin

i 1 ≤ AT
i νi ≤ γ

max
i 1. 

If Ai is full row rank, then the polytope γmin
i 1 ≤ AT

i νi ≤ γmax
i 1

is bounded. Similarly, we can establish that δi is bounded based 
on (16d) and (16e), which completes the proof. □

Before delving into the case studies that demonstrate the per-
formance of the proposed method and its warm-start extension, 
we examine one final, more restricted, version of the games 
described in Definition  2. Namely, we aim to show that when the 
sets Xi(π ) in Quadratic Aggregative games include only equality 
constraints, sufficient conditions on JL(x, π ) can be established 
such that the overall procedure achieves linear convergence rate.

4.2. On convergence rate for quadratic aggregative games with 
equality constraints

We start by observing that for sets Xi(π ) of the form Xi(π ) :=
{xi | Aixi = bi − Aπi π}, for every π ∈ P , a closed-form 
description of the lower-level game’s v-NE exists, provided that 
certain structural properties hold. 

Proposition 2.  Let the Stackelberg game be defined as (3) under 
Standing Assumptions  1–3, and in line with Definition  2. Moreover, 
let the followers’ constraint sets be given by Xi(π ) := {xi | Aixi =
bi − Aπi π}, with Ai that is full row rank for every i ∈ I. Then, the 
unique NE of G0(I;π ) is given by x∗(π ) = Tπ + τ  for some specific 
T ∈ RNmF×mL  and τ ∈ RNmF .
9

Proof.  If a pair (x∗(π ), ν∗) constitutes the NE of G0(I;π ), then it 
has to solve the joint KKT system [

K A
T

A 0

][
x∗
ν∗

]
+

[
S
A
π

]
π =

[
−r
b

]
, (18)

where A = blkdiag(Ai)i∈I , S = vstack(Si)i∈I , A
π
= vstack(Aπi )i∈I , 

r = vstack(ri)i∈I , b = vstack(bi)i∈I and K = blkdiag(Pi − Qi)i∈I +
vstack(1T

N⊗Qi)i∈I . Observe now that because each Ai has full row 
rank so does A. Let Z ∈ RNmF×(NmF−meq), with meq =

∑
i∈I meq,i, 

be a matrix whose columns form a basis for the null-space of 
A, i.e., AZ = 0. Moreover, let Y ∈ RNmF×meq  be any matrix 
such that [Y | Z] is invertible. Then, every x∗ that solves (18) 
can be represented as x∗ = Yxr + Zxn, where xr  is any vector 
such that Ax∗ = AYxr = b − A

π
π , which is guaranteed to exist 

due to Standing Assumption  1. Similarly, by multiplying the first 
equation of (18) by ZT  we get ZTKZxn = −ZTKYxr − ZT Sπ −
ZT r . Observe that AY  is a square invertible matrix so xr  can be 
expressed as xr = Trπ + τr , where Tr = −(AY )−1A

π  and τr =
(AY )−1b. On the other hand, due to Standing Assumption  3, matrix 
K  has to be positive definite as the game’s pseudo-gradient given 
by F (x, π ) = Kx+Sπ+r is strongly monotone. Therefore, ZTKZ ≻
0 also holds since Z forms a basis for the null-space of A, and we 
can write xn = Tnπ + τn, where Tn = −(ZTKZ)−1ZT (S + KYTr )
and τn = −(ZTKZ)−1ZT (r + KYτr ). Finally, it is clear that x∗(π ) =
Tπ + τ  for T = YTr + ZTn and τ = Yτr + Zτn. □

With Proposition  2 in place, we can proceed to identify a par-
ticular setup of bi-level game G1 that achieves linear convergence 
when Algorithm 1 is used. 

Proposition 3.  Let the Stackelberg game be defined such that 
Proposition  2 holds. Moreover, let the leader’s objective JL(x, π ) be 
strongly convex in pT = [xT , π T

]. Then, Algorithm 1 exhibits linear 
convergence rate.

Proof.  If Proposition  2 holds, then JL(x∗(π ), π ) is a composition of 
a linear map and a strongly convex function, i.e., JL(x∗(π ), π ) :=
JL(Tπ + τ ), where TT

= [TT , ITmL
] and τ T = [0T

NmF
, τ T ]. The chain 

rule now directly yields Hessπ JL = T
T
· HesspJL(Tπ + τ ) · T ≻ 0, 

as JL is strongly convex and T  has a full column rank. Hence, 
under Proposition  2, Algorithm 1 reduces to projected gradient 
descent with strongly convex objective for which we can directly 
invoke  (Bauschke & Combettes, 2017, Prop. 26.16) to establish 
linear convergence rate. □

Proposition  3 presents a rare instance of (3) where the prob-
lem reduces to a standard optimization setting, enabling the 
use of traditional constrained optimization tools. This provides 
valuable insight into the algorithm’s ability to recover similar 
properties as those achieved by algorithms that rely on polytopic 
constraints of the followers, such as in Grontas et al. (2024). For 
more general setups of G1, the inherent non-convexity arising 
from the equilibrium constraints makes it challenging to establish 
convergence rate guarantees and is a topic for future research.

In the following section, we will introduce in detail the two 
numerical case studies showcasing the performance of the main 
decentralized algorithm and its corresponding warm-start proce-
dure. Additionally, as discussed in Section 3, we will demonstrate 
the algorithm’s behavior when the lower-level procedure for 
computing the v-NE is halted after a fixed number of iterations, 
rather than being allowed to fully converge.

5. Numerical examples

We consider two scenarios of a case study in the smart mo-
bility domain previously introduced in Maljkovic et al. (2023a, 
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2023c). In particular, we analyze a market model depicted in Fig. 
3, where ride-hailing companies I = {I1, I2, I3} compete to meet 
demand requests that are distributed heterogeneously across the 
city of Shenzhen (Bellocchi, Latora, & Geroliminis, 2021). The 
city is inherently partitioned into four Voronoi-based regions 
by the available charging infrastructure that consists of stations 
M = {M1,M2,M3,M4} and is controlled by the central authority 
L through adjustable electricity prices π ∈ [pmin, pmax]

4. At a 
particular point in time, we assume that each company i ∈ I
wants to recharge its Ni vehicles by distributing them among 
charging stations M. Namely, we let the vector xi ∈ Xi ⊆ R4

denote the strategic decision of company i that describes the 
fleet split among charging stations, i.e., ∥xi∥1 = Ni and xji ≥
0 represents what fraction of the fleet is to be directed to a 
particular station j ∈M.

The central authority, which can for example be the power-
providing company or the government, may have an interest in 
balancing the demand on the power grid or it might aim to design 
pricing incentives to enhance coverage and encourage idle taxi 
drivers to avoid flocking to the more demand-attractive areas. We 
assume that the nominal prices of charging are encoded in πbase ∈

R4 and that the central authority is then interested in determin-
ing the optimal discount ∆π ∈ R4, all while adhering to the total 
monetary discount budgets Bi ∈ R assigned to companies I based 
on external subsidies that they receive. Upon the announcement 
of the pricing vector π := πbase−∆π , every company operator is 
interested in minimizing its operational cost under the feasibility 
constraints imposed by the battery status of its vehicles. Similar 
to the objectives analyzed in Maljkovic, Nilsson, and Geroliminis 
(2022), Maljkovic et al. (2023c), Tushar, Saad, Poor, and Smith 
(2012), the operator’s cost is assumed in the form of a sum of 
three terms, i.e., Ji(xi, σ (x−i), π ) = J1i (xi, σ (x−i))+ J2i (xi)+ J3i (xi, π ), 
where J1i (xi, σ (x−i)) denotes the expected queuing cost at differ-
ent charging stations due to their limited capacities, J2i (xi) denotes 
the negative expected revenue in the regions around charging 
stations, J3i (xi, π ) denotes the charging cost and σ (·) is defined 
as in Definition  2. The resulting form is quadratic and given by 
Ji(xi, σ (x−i), π ) = 1

2x
T
i Pixi+x

T
i Qiσ (x−i)+rTi xi+π

T Sixi. On the other 
hand, we assume that the central authority chooses a desired 
vehicle distribution vector Z ∈ [0, 1]4 satisfying ∥Z∥1 = 1 and 
plays the game with the ride-hailing companies in an attempt 
to minimize the cost JG(σ (x)) = 1

2∥σ (x) − 1TnZ∥22, with n =
col(Ni)i∈I being the vector containing the number of vehicles per 
company that need to be recharged.

Concerning the constraint sets of ride-hailing companies, they 
encompass information about the number of vehicles that can 
reach a certain station under a linear battery discharge model 
and given the current battery level after the rush-hour period 
simulation. It has been shown in Maljkovic et al. (2023a) that 
a specifically designed polytopic constraint allows for the con-
sistent matching of each ride-hailing vehicle with precisely one 
charging station in an attempt to respect the allocation given 
by the split x. For every i ∈ I, the matching constraints in 
accordance with Maljkovic et al. (2023a) are given by Xm

i :=

{xi ∈ R4
| Aixi = bi ∧ Gixi ≤ hi}, for some properly chosen 

Ai, bi,Gi, hi. Apart from them, we also account for the limited 
discount budget Bi through the constraint X b

i (π ) := {xi ∈ R
4
|

(πbase − π )T Sixi ≤ Bi}. Hence, for any pricing strategy π ∈ P
and for every i ∈ I, the resulting constraint set is given by 
Xi(π ) := Xm

i ∩ X b
i (π ). Generally speaking, Xi(π ) is a polytopic 

constraint in xi but does not comply with the structure proposed 
in Assumption  1 of Section 4. Therefore, we test two scenarios:

(1) To illustrate the performance of the algorithm in a more 
general scenario, e.g., where the sets Xi(π ) are not gov-
erned by a scaled linear combination of π and x , we shift 
i

10
Fig. 3. Illustration of the problem setup with ride-hailing companies I =
{I1, I2, I3} operating in a region with charging stations M = {M1,M2,M3,M4}. 
The central authority L chooses the electricity price π ∈ P ⊆ R4 so as to respect 
the discount budget Bi of each company i ∈ I.

away from the original setup in Maljkovic et al. (2023c) and 
assume that the discount budgets are finite, i.e., Bi <∞ for 
all i ∈ I;

(2) To demonstrate the effects of the warm-start procedure 
and early stopping of the lower-level v-NE computation, 
we set Bi = ∞ for all i ∈ I, which yields X b

i (π ) = R
4 and 

gives rise to an identical problem setup as the one analyzed 
in Maljkovic et al. (2023c).

The number of vehicles per company that want to recharge is 
given by n = [194, 181, 157] and Z is chosen to correspond to the 
total number of requests in each cell. For the analyzed case study, 
Z is such that 1TnZ = [198, 103, 144, 87] and we set pmin = 0.0
and pmax = 5.0. For the extensive list of all remaining parameters 
in the simulation, we refer the reader to Maljkovic et al. (2023a).

5.1. Finite discount budgets

In this case study, the finite discount budgets are given by 
vector B = [14000, 13000, 12000] and the base price is given 
by πbase = [5.0, 3.0, 5.0, 3.0]. Before each update step of the 
pricing policy, we perform kv-NE = 5000 of the Picard–Banach 
fixed point iteration procedure to compute the v-NE of the lower-
level game (Maljkovic et al., 2023c) for the current value of the 
pricing vector. For the outer loop, we set the number of iterations 
to kl-SE = 350 and observe the average duration of one update 
step of approximately τavg ≈ 0.5sec. For the given number 
of iterations and the pricing vector π1

init = [4.0, 2.0, 3.0, 1.0]
used to initialize the outer loop of the procedure, the system 
manages to achieve perfect matching with respect to the desired 
vehicle distribution and attains JL (x∗ (π∗) , π∗) = 0.022. This is 
further supported by plots in Fig.  4. The three upper plots show 
the evolution of the attained vehicle accumulations at different 
charging stations, the evolution of the pricing vector π , and the 
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Table 1
Vehicle distribution and charging prices.
 Stations M Vehicle distribution Charging prices
 1TnZ σ (x∗) π∗j ∆π∗j  
 M1 198 197.81 3.39 1.61  
 M2 103 103.04 2.20 0.80  
 M3 144 144.09 2.83 2.17  
 M4 87 87.06 1.58 1.42  

Table 2
Performance comparison for different initializations.
 Initial π Resulting prices at Mj Attained JL 
 π1 π2 π3 π4  
 π1

init 3.39 2.20 2.83 1.58 0.0222  
 π2

init 3.57 2.38 3.01 3.00 2000.0  
 πw

init 4.58 3.36 3.99 2.75 0.0039  

corresponding value of the central authority’s objective function. 
The lower three plots demonstrate that no discount budget con-
straint has been violated during the iterative procedure, i.e., the 
used discount budget for company I1 is Bused

1 ≈ 13523, for 
company I2 is Bused

2 ≈ 12860, and for company I3 is Bused
3 ≈ 11371. 

A full overview of the relevant numerical values is presented 
in Table  1. It is important to note that the initial value πinit
has been obtained via sparse grid search as the setup does not 
comply with the structure of inequality constraints in Assumption 
1 of Section 4. Since the complexity of the grid-search procedure 
grows exponentially in the size of π and polynomially in the 
granularity of the grid, it is evident that this kind of heuristic is 
in general not suitable for larger problem sizes. However, for a 
broad class of bi-level games where the agent’s constraints are 
given as in Assumption  1, we can deploy our iterative warm-up 
procedure. Therefore, in the following subsection, we shift back 
our focus to the original setup of Maljkovic et al. (2023c).

5.2. Infinite discount budgets

When discount budgets are infinite for every ride-hailing 
company, starting the outer loop with the initial value π2

init =

[3.0, 3.0, 3.0, 3.0] yields that the value of the central authority’s 
objective converges to JL (x∗ (π∗) , π∗) = 2001 (Maljkovic et al., 
2023c). As previously discussed, π2

init already renders certain 
inequality constraints active which immediately creates a dis-
tinction between the original and the surrogate best-response 
optimization problems. Instead, we let the warm-start procedure 
with ρ = 1.0 run for kw = 500 iterations to obtain the 
initial pricing vector πw

init = [4.8, 3.3, 3.9, 2.7]. Starting the outer 
loop with πw

init induces an interior v-NE in the first iteration 
and the complete algorithm is later capable of recovering the 
perfect matching attained when starting from π1

init. Since the 
theoretical optimal value for the central authority’s objective is 
zero, the generation of two distinct pricing vectors from the 
initial states π1

init and πw
init indicates the general non-uniqueness 

of the solution in these bi-level games. In Fig.  5, we depict the 
evolution of the complete algorithm for different initial pricing 
vectors while Table  2 lists all the relevant numerical values. It 
is interesting to note that the warm-start procedure provides a 
significantly smaller starting value of the central authority’s ob-
jective compared to π1

init and π2
init. However, from the perspective 

of ride-hailing company operators, starting from π1
init results in 

more favorable charging prices in terms of the pricing vector’s 
magnitude and hence, the total charging costs.

Finally, we test the robustness of the proposed method by 
exploring the impact of varying the number of Picard–Banach 
iterations, k ∈ [10, 5000], performed before each update step 
v-NE

11
Fig. 4. The plots show the evolution of the total vehicle accumulation at the 
charging stations σ (x), the price of charging πj at the station Mj , the leader’s 
objective JL(x∗(π ), π ), and the portion of the budgets used at each iteration.

of the outer procedure. Using π1
init = [4.0, 2.0, 3.0, 1.0] as the 

initial value of the leader’s decision and keeping the number of 
outer loop iterations constant, Fig.  6 illustrates the evolution of 
the leader’s objective. Even without full convergence of the inner 
loop, the outer loop consistently improves the leader’s decision-
making, albeit at a slower pace. Notably, kv-NE = 5000 achieves 
the lowest value of the leader’s objective significantly faster than 
the other tested values. However, after 350 iterations, the differ-
ence between the objective values attained for kv-NE = 5000 and 
kv-NE = 2500 becomes negligible, suggesting also the possibility 
to reduce the number of inner-loop iterations and still end up in 
the global minimum. Hence, at least for certain cases, it seems 
like the method could potentially be extended to incorporate an 
equilibrium-seeking mechanism on the lower level, which is a 
promising direction for future research. 
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Fig. 5. Evolution of the central authority’s objective for different initializations 
of the upper-level iterative loop.

Fig. 6. Evolution of the central authority’s objective per iteration for different 
numbers of inner loop iterations, kv-NE ..

6. Conclusion

In this work, we formalized an iterative framework based 
on the Implicit Function Theorem for tackling the problem of 
computing the local Stackelberg equilibrium in bi-level games. 
Apart from generalizing the idea introduced in Maljkovic et al. 
(2023c) to suit a broader class of games, we address the reported 
shortcomings of random initialization for a class of quadratic, ag-
gregative games with polytopic constraints. In light of the overall 
decentralized nature of the approach, we formulate an internal 
v-NE feasibility test in the form of a linear program that can be 
efficiently solved by a distributed alternating direction method of 
multipliers. In addition to theoretical guarantees, we provide an 
experimental demonstration of the performance improvement in 
the previously analyzed case study in the smart mobility domain.

In the future, it would be interesting to explore the devel-
opment of other distributed initialization methods capable of 
handling convex constraints beyond polyhedral forms. Moreover, 
the proposed approach holds practical significance, as it can be 
applied to various real-world problems in domains such as energy 
management and transportation. In light of the conducted robust-
ness analysis in the numerical section, it would be valuable to 
investigate whether convergence guarantees could also be estab-
lished for systems with rapidly changing dynamics, particularly if 
lower-level agents employ an equilibrium-seeking mechanism.
12
Appendix

Lemma 3 (Chapter 2.17 of Bernstein (2009)). Let M1 ∈ Rp×p, 
M2,MT

3 ∈ Rp×q and M4 ∈ Rq×q. If M1 is nonsingular, then the 
inverse

M−1 :=
[

M1 M2

M3 M4

]
of M :=

[
M1 M2
M3 M4

]
exists if and only if Schur complement of M1 in M, i.e., Sh (M1) =

M4 − M3M−11 M2, is nonsingular. The blocks are given by M1 =

M−11 +M−11 M2 Sh(M1)−1M3M−11 , M2 = −M−11 M2 Sh(M1)−1, M3 =

− Sh(M1)−1M3M−11  and M4 = Sh(M1)−1.
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