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Abstract— Dynamical flow networks with heterogeneous
routing are analyzed in terms of stability and resilience to
perturbations. Particles flow through the network and, at each
junction, decide which downstream link to take on the basis
of the local state of the network. Differently from single-
commodity scenarios, particles belong to different classes, or
commodities, with different origins and destinations, each
reacting differently to the observed state of the network. As
such, the commodities compete for the shared resource that
is the flow capacity of each link of the network. This implies
that, in contrast to the single-commodity case, the resulting
dynamical system is not monotone, hence harder to analyze. It
is shown that, in an acyclic network, when a feasible globally
asymptotically stable aggregate equilibrium exists, then each
commodity also admits a unique equilibrium. In addition, a
sufficient condition for stability is provided. Finally, it is shown
that, differently from the single-commodity case, when this
condition is not satisfied, the possible unique equilibrium may
be arbitrarily fragile to perturbations of the network.

Index Terms— Dynamical flow networks, multicommodity
flows, resilience, distributed routing, heterogeneous routing.

I. INTRODUCTION

In a multicommodity network particles of different classes
flow through a network sharing and competing for the chan-
nel resource. Examples of multicommodity flow problems
are ubiquitous in engineering sciences. Traffic networks, air
traffic control, data networks, production chains and supply
chains can all be interpreted as multicommodity networks,
where the aim is usually to let the highest possible volume
of particles of the different classes through the network.
Models for multicommodity flow networks based on PDEs
and the celebrated LWR model have been studied [1], [2],
but solutions are usually difficult to obtain even in simple
settings. In this paper, we propose and analyze a dynamical
ODE-based model for networks with heterogeneous routing.
The network topology is modeled as a directed graph in
which nodes are junctions and edges are links through which
particles can flow. The flow on each link is bounded from
above by a finite value called the link capacity. Particles
enter in the network from origins and leave it at destinations,
which possibly vary from commodity to commodity. When
particles arrive at a junction, they decide which subsequent
link to take on the basis of the local state of the network,
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that is, the aggregate of particles in each possible subsequent
link. In other terms, particles are unable to distinguish in
the flow the classes of particles. Routing is heterogenous
in that particles of different classes have different preferred
paths and react to the local state of the network in different
ways. In contrast to single-commodity scenario, in which
all particles belong to the same class and hence there is
no competition among different classes, multicommodity
networks show a complex behavior even in the static setting
[3], in which it has been shown that the maximum throughput
in a multicommodity network is bounded away from the
value predicted by the celebrated max-flow min-cut theorem.
Dynamical models based on ODEs have been proposed in
the literature, but heterogeneity is usually embedded in a
single-commodity scenario with fixed turning rates, i.e., in
which at each junction the fraction of vehicles turning into
each subsequent link is fixed [4], [5]. Differently from the
latter approach, we extend the framework proposed in [6], [7]
and consider a dynamic responsive scenario, in which agents
have preferred paths that they would follow when completely
isolated in the network, but are also willing to adapt their
behavior according to the local state of the network, and
avoid preferred, but highly congested, paths.

Besides the analysis of the stability of the network, we
study the resilience properties of multicommodity networks
with respect to perturbations, which in this paper are under-
stood as reduction of the link’s capacities. The main results
of this paper are the following: 1) Under certain assumptions
on the constant inflows in the network, the network admits
a globally asymptotically stable equilibrium for each com-
modity, and 2) When the network is not single-commodity,
it can be extremely fragile with respect to perturbations. In
particular, perturbing a network at equilibrium can trigger a
cascade effect that makes the network unstable. In addition,
examples show that such a perturbation can be arbitrarily
small. Such a behavior arises in multicommodities only,
and has no counterpart in single-commodity network, where
instead, as shown in [8], well designed routing policies can
completely exploit the structure of the network and ensure
maximal resilience to perturbations.

The paper is organized as follows: the rest of this section
presents the notation. In Section II we provide a motiving
example for the fragility of the multicommodity network.
In Section III we propose a model for dynamical flow
networks with heterogeneous routing. Section IV is devoted
to stability analysis of the model and to a sufficient condition
for the stability of the network. Section V discusses resilience
and formally proves the claims made in Section II. Finally,
Section VI presents some future research directions.



Let R be the set of real numbers and let R+ := {x ∈ R :
x ≥ 0} denote the set of non-negative real numbers. For a
set A, |A| denotes its cardinality and with RA(+), we mean
the (non-negative) real vectors indexed by the elements in
A. In the same manner, RA×B(+) are matrices indexed by the
product set of A and B. A directed multi-graph is a pair
consisting of a finite set of nodes, V , and a finite multi-set,
i.e, a set where an element is allowed to occur more than
once, of directed links, E , containing ordered pairs of nodes.
For a link e = (v1, v2) ∈ E we write σe = v1 for its tail and
τe = v2 for its head, see Fig. 1a. The set of outgoing links,
E+v , for a node v ∈ V is defined as E+v := {e ∈ E : σe = v}.
In the same manner the set of incoming links is defined as
E−v := {e ∈ E : τe = v}. The sets, for a node v, are
illustrated in Fig. 1b. For sake of notation, we put R := RE+.

σe τe
e

(a) The preceding and next
node for a link e

v

E−
v E+

v

(b) The sets of incoming and
outgoing edges from a node v

Fig. 1: Notation

II. A MOTIVATING EXAMPLE

Let us consider the network displayed in Fig. 2. First,
we focus on single-commodity dynamical flows, where the
density dynamics on each link e is described by the following
conservation law

ρ̇e = ue(t)− fe(ρe(t)).
Here, fe(ρe(t)), called the flow function of link e, represents
the outflow from e, and is given by

fe(ρe(t)) = Ce(1− e−ρe(t)),
where Ce is the link’s maximum flow capacity. On the other
hand, the term ue describes how much of the flow through
node σe should be sent to link e. In particular, we set

ue(t) = Ge(ρ(t))(λσe +
∑
j∈E−σe

fj(ρj(t))),

where Ge(ρ(t)) is a map that describes how the fraction of
flow though a node that is routed towards link e depends on
the current local state of the network and λv1 = 2, λvi = 0
i 6= 1, denotes a static inflow at the origin node v1.

The routing polices are constructed as

G1(ρ1, ρ2) =
e−ρ1

e−ρ1 + e−ρ2
, G3(ρ3, ρ4) =

e−ρ3

e−ρ3 + e−ρ4
,

G2(ρ1, ρ2) =
e−ρ2

e−ρ1 + e−ρ2
, G4(ρ3, ρ4) =

e−ρ4

e−ρ3 + e−ρ4
,

and G5(ρ5) ≡ 1. With these routing policies, it can be ver-
ified that the network dynamics admits an equilibrium with

v1 v2 v3

v4

λ = 2

C1 = 2

C2 = 2 C3 = 2

C5 = 0.7

C4 = 2

f∗
1 = 1

f∗
2 = 1 f∗

3 = 0.5

f∗
5 = 0.5

f∗
4 = 0.5

Fig. 2: A single-commodity network. The minimum residual
capacity 0.2 is achieved at node v3. Hence, under any
perturbation of magnitude smaller than 0.2 the network
is still be able to transfer the external inflow λv1 to the
destination node v4.

corresponding flow vector f∗ whose entries are specified in
Fig. 2. Such equilibrium is globally asymptotically stable [6].

We want to study how the limit flow changes when the
network is perturbed, namely, when the flow capacity is
reduced from Ce to C̃e < Ce on some links. Define the mar-
gin of resilience to be the infimum aggregate flow capacity
reduction

∑
e∈E(Ce− C̃e), or perturbation magnitude, such

that the perturbed system

ρ̇e = ũe(t)− f̃e(ρe(t)),
ũe(t) =

∑
j∈E−σe

f̃j(ρj(t)) ·Ge(ρ(t)).

is unstable, i.e., the density vector ρ(t) blows up in the limit
of large t. For a single-commodity network, it was shown that
the margin of resilience equals the minimun node residual
capacity [6], [7]. This implies that the network in Fig. 2,
with the given routing policies, can absorbe any perturbation
of magnitude smaller than 0.2.

Now, let us move to a multicommodity scenario, where
the particle density on each link is mixture of particles of
two different classes, A and B, such that

ρe = ρAe + ρBe .

We assume that the particles are fully mixed, so that the
dynamics for particles of class k = A,B are

ρ̇ke = uke(t)− ρke(t)

ρe(t)
fe(ρe(t)),

where

uke(t) = Gke(ρ(t))(λkσe +
∑
j∈E−σe

ρkj (t)

ρj(t)
fj(ρj(t))),

and λAv1 = λBv1 = 1, λAvi = λBvi = 0 for i 6= 1 are static
inflows. We let the particles have different routing policies,
i.e, the two commodity flows A and B have different path
preferences. In particular, we consider routing polices of the



form

Gk1(ρ1, ρ2) = 1−Gk2(ρ1, ρ2) =
fk∗1 · e−α

k
1ρ1

fk∗1 · e−α
k
1ρ1 + fk∗2 · e−α

k
2ρ2

Gk3(ρ3, ρ4) = 1−Gk4(ρ3, ρ4) =
fk∗3 · e−α

k
3ρ3

fk∗3 · e−α
k
3ρ3 + fk∗4 · e−α

k
4ρ4

and GA5 (ρ5) ≡ GB5 (ρ5) ≡ 1. Here, fk∗e is the limit flow
for commodity k on link e as given in Fig. 3a. Observe
that the aggregate limit flows coincide with those in the
single-commodity case. On the other hand, αke > 0 are
parameters which do not effect the limit flows. However,
these parameters do affect how the response to perturbations.

In order to illustrate the fragility of the multicommodity
setting, we let αAe1 = αBe2 = 1000 and αBe2 = αBe1 = 1
and αke3 = αke4 = 0.01, and consider now a perturbation
of magnitude 0.01 which reduces Ce1 = 2 to C̃e1 = 1.99.
The limit flows for the perturbed dynamics are shown in
Fig. 3b. The perturbation causes the limit flow on link 3 to
increase and exceed the capacity of the subsequent link 5.
Consequently, the density on link 5 grows unbounded. This
implies that the margin of resilience in the multicommodity
case is not larger than 0.01. This example then indicates that
a dynamical multicommodity network can be much more
fragile than a single-commodity one with the same topology
and aggregate equilibrium flow.

III. A MODEL FOR DYNAMICAL FLOW NETWORKS WITH
HETEROGENOUS ROUTING

We model a dynamical multicommodity flow network as
a directed multigraphM = (V, E), V being the set of nodes
and E being the set of links, that is shared by a finite set
K of different commodities. For every k ∈ K, sk and dk in
V will denote, respectively, the source and destination nodes
of commodity k, and λk ≥ 0 will stand for the inflow of
such commodity at node sk from outside the network. In
order to account for the fact that, in certain applications,
not all commodities can access every link, for every node
v we denote by Ekv ⊆ E+v the set of accessible (out-)links
of v for commodity k. The set of all accessible links for
commodity k ∈ K is then denoted by Ek := ∪vEkv . We
make the following steady assumption, which ensures that
particles of each commodity can reach their destination.

Assumption 1 (Existence of origin-destination paths):
For k ∈ K with λk > 0 and every e ∈ Ek there exists a
directed path in the sub-multigraph (V, Ek) from τe to dk.

Particles flow through the network queuing up on the links.
We denote by ρke ∈ R+ the density of particles of commodity
k ∈ K on link e ∈ E , and we denote by ρe :=

∑
k∈K ρ

k
e

the aggregate density of particles on e. All particle densities
in the whole network can then be described by the matrix
ρ ∈ RE×K+ . The rest of the section is devoted to describing
the dynamics of the densities ρke .

To this aim, for every link e, we denote by fe the total
outflow from e, and we assume that it is a function of the
aggregate density of the link, namely, fe = fe(ρe). The
quantity Ce := supρe≥0 fe(ρe) represents the (maximum

v1 v2 v3

v4

λA = 1, λB = 1

C1 = 2

C2 = 2 C3 = 2

C5 = 0.7

C4 = 2

f∗
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3 = 0.19 + 0.31

f∗
5 = 0.19 + 0.31

f∗
4 = 0.01 + 0.49

(a) Equilibrium flows for a simple network. All flows are less
than edges capacities, so that the network is able to fully transfer
the external inflows λA, λB to their destinations, node v4.

v1 v2 v3

v4

λA = 1, λB = 1

C1 = 1.99

C2 = 2 C3 = 2

C5 = 0.7

C4 = 2

f∗
1 = 0.24 + 0.75

f∗
2 = 0.76 + 0.25 f∗

3 = 0.72 + 0.10

f∗
5 = 0.62 + 0.08

f∗
4 = 0.04 + 0.15

(b) The same network when edge e1’s capacity is slightly
decreased. Now the inflow to link e5 is larger than its capacity,
and hence the network is not able to handle the flow demands.

Fig. 3: A simple network, with two external inflows λA, λB
at node v1. Node v4 is the destination for both flows. The
flows shown in figure are given in terms of the sum of flows
of the two classes on each link, i.e., f∗e = fA∗e + fB∗e .

flow) capacity of link e. Throughout the paper, we shall refer
to a network N as the pair of a topology M = (V, E) and
a set of flow functions {fe}e∈E satisfying the following:

Assumption 2 (Flow function): For each link e ∈ E the
flow function fe : R+ → R+ is a strictly increasing
continuously differentiable function with bounded derivative,
with fe(0) = 0 and Ce = supρe≥0 fe(ρe) < +∞.

We further make the simplifying assumption that particles
of different commodities are always homogeneously mixed
in each link. As a consequence, the outflow fke of particles of
class k from link e is proportional to the fraction of particles
of class k on link e, i.e., fke =

ρke
ρe
fe(ρe).

For every non-destination node v ∈ V \ {dk}k∈K, denote
by Λkv the total inflow of commodity k into v, given by

Λkv :=


∑
j∈E−v

ρkj (t)

ρj(t)
fj(ρj(t)) + λk if v = sk∑

j∈E−v
ρkj (t)

ρj(t)
fj(ρj(t)) otherwise

. (1)

For every link e ∈ Ekv , we denote by uke the inflow of
particles of commodity k into link e. As already mentioned,
particles only queue up on links, i.e, the nodes have no buffer
capacities, therefore inflows must satisfy∑

e∈Ekv

uke = Λkv , ∀v ∈ V \ dk. (2)



Since the family of signals {uke}e∈Ek,k∈K describes how
particles split at nodes, we refer to it as a routing control.

With the previous definitions, the dynamics of density of
commodity k on link e is given by the following mass-
conservation law

ρ̇ke = uke(t)− ρke(t)

ρe(t)
fe(ρe(t)). (3)

The inflow uke can be in principle any signal that satisfies
(2). In this paper we assume

uke = ΛkvG
k
e(ρ). (4)

namely, the routing control is a function of the state of the
network. In particular, we consider distributed policies as per
the following definition:

Definition 1 (Distributed routing policy): A distributed
routing policy is a family of differentiable functions
G := {Gke : R → R+}e∈E,k∈K satisfying, for all k ∈ K,

a)
∑
e∈E+v

Gke(ρ) ≡ 1 for all v ∈ V \ {dk}

b) Gke(ρ) ≡ 0 for all v ∈ V \ {dk}, e /∈ Ekv
c)

∂Gke(ρ)

∂ρj
≡ 0 for all v ∈ V \ {dk}, e ∈ Ekv , j 6∈ E+v

d)
∂Gke(ρ)

∂ρj
≥ 0 for all v ∈ V \ {dk}, e, j ∈ Ekv , e 6= j

e) For every v ∈ V \ {dk} and every proper subset I (
Ekv there exists a continuously differentiable family of
functions, Ḡ,

Ḡke : R → R+

such that
∑
e∈Ekv Ḡ

k
e(ρ) ≡ 1 and such that if

ρe →∞, ∀e ∈ Ekv \ I, ρj → ρIj , ∀j ∈ I,
then

Gke(ρ)→ 0, ∀e ∈ Ekv \ I,
Gkj (ρ)→ Ḡkj (ρI), ∀j ∈ I.

We can now give the definition of a Dynamical Multicom-
modity Network.

Definition 2 (Dynamical multicommodity network):
A dynamical multicommodity network is a network N
associated with a family of distributed routing policies G
and a set of commodity demands {sk, dk, λk}∀k∈K, where
the dynamics is given by (3) and controlled by (4).

Remark 1: In Definition 1, property a) ensures mass
conservation at each node, while property b) ensures that
particles of commodity k are routed to links on which
commodity k is allowed only. For each node v ∈ V and
e ∈ E+v , property c) ensures that each Gke(ρ) only depends on
densities of links in E+v , hence it is distributed in the sense
that decisions are taken on the basis of local information
only. Property d) describes the following monotone behavior:
increasing the density of a link reduces the fraction of flow

v
λ

e3

e1

e2

Fig. 4: A local network with E+v = {e1, e2, e3}.

routed towards that link, and viceversa. Such a setting can
be interpreted as an attempt to avoid congested links, and
will be instrumental in the proof of our main result. Finally,
property e) states that when a link is completely congested,
i.e., its density is infinite, it cannot be used.

Remark 2: The definition of distributed routing policy
follows the definition in [6], [7]. The key novelty is that in
the present setting different commodities are allowed to have
different routing policies, namely, to have different routing
preferences and to respond in a different way to congestion.
On the other side, all commodities compete for the same
shared resource, which is the flow capacity on each of the
links of the network.

Remark 3 (Loss of monotonicity): Since the controllers
uke and the flows are determined by the aggregate densities,
the monotonicity property, that is a central property for the
results in the single-commodity case, [6], [7], is no longer
guaranteed.

Finally, a network that can fulfil all flow demands is called
fully transferring, as per the following definition:

Definition 3 (Fully transferring): A dynamical multicom-
modity network is said to be fully transferring if

lim inf
t→∞

∑
e∈E−dk

fke (t) = λk , ∀ k ∈ K.

IV. STABILITY ANALYSIS

In this section we will state a sufficient condition for an
acyclic dynamical multicommodity network to have finite
limit densities and a unique limit flow. First of all, we analyze
a local network, see Fig. 4, namely a network with a single
node. For a local network, the dynamics is given by

ρ̇ke =λk(t)Gke(ρ(t))

− ρke(t)

ρe(t)
fe(ρe(t)), ∀e ∈ E+v , ∀k ∈ K.

(5)

From now on, we shall refer to a density ρ which is an
equilibrium for (5) as a (density) equilibrium, and to the
corresponding flows {fe(ρe)}e∈E as a flow equilibrium.

The next result offers a necessary and sufficient condition
for the network to admit a globally asymptotically equilib-
rium.

Theorem 1: Consider a local dynamical multicommodity
network N . Assume moreover that the inflows are converg-
ing, namely limt→+∞ λk(t) = λk,∀k ∈ K. Then it holds
that



a) if
∑
j∈J λj <

∑
e∈EJv Ce for every nonempty J ⊆

K, then there exists a finite unique ρ∗ such that
limt→∞ ρke(t) = ρk∗e for every e ∈ E+v and k ∈ K.

b) if there exists a nonempty J ⊆ K such that
∑
j∈J λj ≥∑

e∈EJv Ce, then there exists at least one k ∈ J such
that limt→+∞ ρe(t) = +∞ for all e ∈ Ekv .

Theorem 1 deals with stability of a local network. In the
rest of this section we shall address the stability of an acyclic
network with a single origin by interpreting it as a cascade
of local networks.

To this end, let J ⊂ K and VJ := {v ∈ V|EJv 6= ∅}.
Moreover, let UJ ⊂ VJ and ∂UJ := {e = (a, b) ∈ EJ |a ∈
U , b /∈ U}. Define the minimum cut capacity between two
nodes o, s ∈ V , Cko→s as

CJo→s := min
UJ⊂VJ s.t o∈UJ ,s/∈UJ

∑
e∈E+∂U

Ce.

For sake of simplicity, consider now an acyclic network
with the same origin o ∈ V for all the commodities, i.e.,
sk = o for all k ∈ K. The following proposition offers a
sufficient condition for such a network to admit unique limit
flow and density.

Proposition 1: Consider an acyclic dynamical multicom-
modity network with single origin. Then a sufficient condi-
tion for it to admit a unique limit density and a unique limit
flow is that for every k ∈ K and for every v ∈ Vk

min
(
CJo→v, λJo

)
<
∑
e∈EJv

Ce. (6)

V. RESILIENCE

In this section we investigate how the dynamic multi-
commodity network responds to perturbations. In this
paper a perturbation of a flow network corresponds to the
reduction of the flow function as a function of the density,
on possibly more than one link. Formally, following [6],
[7], a perturbation is modeled as a family of perturbed flow
functions, {f̃e(ρe)}e∈E such that f̃(ρe) ≤ fe(ρe), ∀e ∈
E and f̃e satisfies Assumption 2. The magnitude of the
perturbation on one link e ∈ E is then defined as δe :=
supρe≥0 f̃e(ρe)− fe(ρe) and the total magnitude of the per-
turbation is then given by δ :=

∑
e∈E δe. Given a family of

perturbed flow functions {f̃e(ρe)}e∈E , a perturbed network
Ñ is a network with the same graph, commodities, origin,
destinations and routing policy as N , and with flow functions
f̃ . The resilience of a dynamical flow network associated
to a network N and routing policies G is then defined as
the infimum total magnitude of perturbations making the
perturbed dynamical flow network Ñ not fully transferring.

It was proven in [6], [7] that, in the single-commodity
case, the resilience of an acyclic dynamical flow network
coincides with the minimum residual capacity, defined as

min
v 6=d
{
∑
e∈E+v

Ce − f∗e } ,

where f∗ is the limit flow of the unperturbed dynamical
flow network. At the core of the result is a diffusivity

property of single-commodity local dynamical flow networks
(cf. [7, Lemma 1]) guaranteeing that a perturbation of total
magnitude δ in either some of the outlinks, and/or an increase
of the inflow, does not increase the limit flow of any out-
link by more than the sum of δ and of the inflow increase. In
other words, the network does not overreact to perturbations.

The goal of this section is to show that, when more than
one commodity are present, dynamical flow networks can
be instead arbitrarily fragile. In particular, we will construct
a family of simple examples of multicommodity dynamical
flow networks (with topology illustrated in Fig. 3) that,
irrespective of their minimal residual capacity, can lose their
fully transferring property even by means of arbitrarily small
perturbations. This will show that their resilience equals 0.

We will proceed by first stating some properties of local
multicommodity dynamical flow networks that have the fully
accessible properties. The first one can be considered as a
weaker version of the aforementioned diffusivity property for
multicommodity dynamical networks.

Lemma 1: Consider a fully accessible local dynamical
multicommodity network N , with inflow λ such that∑

k∈K
λk <

∑
e∈E+v

Ce.

Let f∗ denote the limit flow for this network. Moreover, let
Ñ be an admissible perturbed network with inflow λ̃ such
that ∑

k∈K
λ̃k <

∑
e∈E+v

C̃e.

Let f̃∗(λ̃) denote the limit flow of the perturbed network,
with the inflows λ̃. Then for every I ⊆ E+v it holds that∑

i∈I

(
f̃∗i (λ̃)− f∗i

)
≤
∑
k∈K

[
λ̃k − λk

]
+

+
∑
e∈E+v

δe.

Lemma 1 provides a bound on the difference between
aggregate limit flows before and after the perturbation in
terms of its magnitude and of the difference between the
inflows. Observe that, when there is only one commodity,
i.e., |K| = 1, Lemma 1 reduces to Lemma 1 in [7]. On
the other hand, the following two results show that, when
more than one commodity is present, each commodity flow
can change in an arbitrary way as long as the bound on the
aggregate flow provided by Lemma 1 is satisfied.

Lemma 2: Consider a local dynamical network with two
outgoing links e1, e2 and two commodity inflows λA, λB . Let
fk∗ be a feasible equilibrium flow. Then, for ε > 0 small
enough, there exist distributed routing policies GA and GB

such that
a) fk∗ is the equilibrium flow of the dynamical local

network,
b) there exits a perturbation of magnitude ε such that the

perturbed limit flow, for one commodity k and for one
link e, satisfies

f̃k∗e > min(λk, f
∗
e )− δ,



where δ > 0 can be chosen arbitrary small.

Notice in particular that the perturbation considered in
Lemma 2 does not change the inflows λA and λB , and hence
by Lemma 1 f̃∗e ≤ f∗e + ε for e = e1, e2. Also notice that
trivially f̃k∗e ≤ min{λk, f̃∗e } ≤ min{λk, f∗e + ε}. Lemma 2
ensures then that after perturbation we get

min(λk, f
∗
e )− δ ≤ f̃k∗e ≤ min(λk, f

∗
e + ε) .

Since ε and δ are arbitrary, we can steer f̃k∗e arbitrarily close
to min(λk, f

∗
e ).

Lemma 3: Consider a local dynamical network, with two
outgoing links e1, e2 and two commodity inflows λAv , λ

B
v .

Let f be a feasible limit flow. Then, if the commodity inflow
changes to λ̃ and the new limit flows satisfy Ce1 > f̃∗e1 > f∗e1
and f̃∗e2 < f∗e2 , there exist routing policies GA, GB , such that
for a given δ > 0

f̃∗e1 >
fA∗e1
λA

λ̃A +
fB∗e1
λB

λ̃B − δ.

We are now ready to construct an example showing that
resilience can be arbitrarily low. To this aim, consider the
network in Fig. 3. Start from a given feasible limit flow f∗

such that

γ1 =
fA∗3

fA∗2

> γ2 =
fB∗3

fB∗2

,

and assume that

min(λA, f∗2 ) >
C5 − f∗2 γ2
γ1 − γ2

.

We claim that we can construct routing policies such that
the network will not be fully transferring after an arbitrarily
small perturbation.

Consider first the local network around node v1. Using
Lemma 2, we know that can construct routing policies
such that after a small perturbation on link 1 the flow of
commodity A on link 2 is steered close to the value

f̃A∗e2 ≈ min(λA, f
∗
2 ) >

C5 − f∗2 γ2
γ1 − γ2

.

In node v3, we construct then the routing policies according
to Lemma 3. In this way, when, after perturbation, fA2
approaches f̃A2 the perturbed limit flow on link 3 converges
to

f̃∗3 =
fA∗3

fA∗2

f̃A∗2 +
fB∗3

fB∗2

f̃B∗2 > C5.

Since the perturbed limit flow on link 3 is greater than the
capacity of link 5, the network loses the fully transferring
property, and the claim is proved.

To illustrate this behavior numerically, recall the moti-
vating example in Section II. Since Cv1→v3 = 2 > C5

the sufficient condition stated in Proposition 1 is violated.
However, as the example shows, the system converges to
finite limit densities. But after the perturbation on link 1,
the system’s perturbed limit flow f̃A∗3 = 0.8 > 0.7 and the
system is not fully transferring anymore. In Fig. 5 we show
how the flows on link 2 and 3 evolve, starting from zero
initial state. The perturbation occurs at t = tp.

tp
0

0.2

0.4

0.6

0.8

1

Time

fA
2

fB
2

fA
3

fB
3

Fig. 5: The time evolution of flows on link 2 and 3. At time
t = tp a perturbation occurs and causes the flow f3 on link
3 to exceed the capacity of link 5. As a consequence, the
density on link 5 grows unbounded and the network loses
the property of being fully transferring.

VI. CONCLUSIONS

In this paper, a model for a dynamical multicommodity
networks has been proposed and studied. A sufficient con-
dition for the stability of the network has been provided. If
the condition is violated, the network can be very fragile to
perturbations, and even a small perturbation can modify the
limit flows drastically and in such a way that the network
becomes unstable. Future research directions include and
are not limited to analysis of cyclic networks, study of the
resilience under constrained routing policies, and design of
robust controllers.
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