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Abstract— Stability of some decentralized traffic signal con-
trol policies for urban traffic networks is studied. It is proven
that, whenever the arrival rates belong to a certain region —
which is the largest where stability is possible— the resulting
traffic network dynamics admit a globally asymptotically stable
equilibrium. The results rely on the use of some entropy-like
Lyapunov functions previously considered in the context of
stochastic queuing networks.
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I. INTRODUCTION

Rapid advancements in traffic sensing technology have
made it possible to use real-time traffic information in
road traffic control. This has opened up the possibility of
replacing traditional fixed-timing traffic signal controllers
with adaptive controllers. Motivated by such possibilities,
this paper studies stability of certain adaptive signal control
policies for urban traffic networks.

References [1], [2], [3] provide an overview of the problem
and practices of urban traffic signal control. Classical strate-
gies consist of using extensive surveys to obtain network
parameters, which are then used to design traffic light plans,
which are either fixed, e.g., see [4], or constantly re-tuned as
in SCOOT, e.g., see [5]. Classical control techniques have
also been used for traffic signal control, e.g., see [6], [7].
However, these works do not provide any guarantees with
respect to performance metrics of interest such as throughput,
delay, and robustness to disruptions.

Recently, well-known algorithms for routing in data net-
works, such as the back-pressure algorithm [8] and its
throughput analysis, have been adapted to the traffic signal
control setting, e.g., see [9], [10], [11]. However, these
algorithms require the traffic signal controllers to have ex-
plicit knowledge about the turning ratios representing the
route choice behavior of drivers, a requirement that may
result impractical in many real-life applications. Recently,
distributed adaptive signal control algorithms that rely on
the estimation of turn ratios at short time scales have also
been proposed, e.g., see [11].
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In this paper, we consider adaptive traffic signal controls
of the form first introduced in our previous works [12], [13].
These controls are completely decentralized, in that the traffic
signals at an intersection are chosen as a function of the
densities in the incoming lanes to that intersection only, and
universal, in that they do not require any knowledge of either
the capacity of the lanes, the turning ratios, or the arrival
rates. Our main contribution is proving that these policies
are maximally stabilizing in the sense that, for the largest
possible arrival rate region, they drive the traffic network
dynamics to globally asymptotically stable equilibria.

The main novelty of this paper with respect to [12], [13]
is the use of entropy-like Lyapunov functions in the stability
analysis, as opposed to monotonicity and l1-contraction
arguments employed there. This different approach proves
stronger in that it allows us to deal with cyclic networks
(while in [12], [13] we were restricted to acyclic networks).

Our use of entropy-like Lyapunov functions is inspired by
results in packet-switched stochastic queuing networks, see
e.g., the recent work [14]. In particular, some of the tech-
nical results in the proofs rely on adaptations of arguments
developed in the context of proportional fairness bandwidth
allocation problems [15]. The use of these techniques in the
context of traffic signal control in urban networks is a novel
contribution to our knowledge.

The rest of this paper is organized as follows. In Sec-
tion II we introduce the dynamical model of urban traffic
network with signalized intersections, and describe a class of
decentralized universal green-line policies. In Section III we
prove that, in the special case when only single lanes can be
activated at every intersection, such green light policies drive
the system to a globally asymptotically stable equilibrium. In
Section IV the proposed green light policy from Section III is
simulated and also a simulation for when multiple lanes can
be activated simultaneously is shown. The paper is concluded
by an Appendix containing a few key technical lemmas.

A. Notation

Let R denote the set of real numbers and R+ the set of
nonnegative reals. For finite sets A and B, let |A| denote
the cardinality of A and RA the space of real-valued vectors
whose elements are indexed by A. For a set of vectors K ⊆
RA, conv(K) will stand for its convex hull.

Let G = (E ,V) denote a directed graph where E is the
set of directed links and V is the set of vertices or nodes.
For each link e = (i, j) ∈ E , let τe = j ∈ V denote the
head of the link e and σe = i ∈ V the tail of the link e.



For each node v ∈ V , introduce the set of incoming links as
Ev := {e ∈ E : τe = v}.

II. MODEL

We describe the topology of a urban traffic network as
a capacitated directed graph G = (V, E , C), whose nodes
v ∈ V represent junctions and whose links i ∈ E represent
lanes, and where C ∈ RE is a vector whose entries Ci > 0
represent the flow capacities of the lanes i ∈ E . Traffic flows
among consecutive lanes according to a routing matrix R ∈
RE×E+ whose (i, j)-th entry Rij —which will be referred to
as a turning ratio— represents the fraction of flow out of
lane i that joins lane j. Conservation of mass implies that∑
j∈E Rij ≤ 1 for all i ∈ E , the quantity 1−

∑
j∈E Rij ≥ 0

representing the fraction of flow out of lane i that leaves
the network directly. In other words, the routing matrix R is
sub-stochastic. Moreover, the natural topological constraints
encoded in the graph G imply that Rij = 0 if τi 6= σj , i.e.,
Rij = 0 whenever lane i does not end in the junction where
lane j starts. We will refer to this property of the routing
matrix R as being adapted to G. Finally, we consider an
arrival vector λ ∈ RE+, whose entries λi ≥ 0 describe the
external inflows on the lanes i ∈ E .

Throughout the paper, we will make the following assump-
tion on the network topology G, the routing matrix R, and
the arrival vector λ.

Assumption 1: The routing matrix R is adapted to the
topology G = (V, E , C). Moreover, for every road i ∈ E ,

(i) there exists some k ∈ E such that
∑
j∈E Rkj < 1

and (Rl)ik > 0 for some l ≥ 0;
(ii) there exists some h ∈ E such that λh > 0 and

(Rl)hi > 0 for some l ≥ 0.

Part (i) of Assumption 1 states that from every lane i ∈ E it
is possible to reach some lane k ∈ E with

∑
j∈E Rkj < 1 by

a length-l path i = j0, j1, . . . , jl = k such that Rjs−1,js > 0
for all 1 ≤ s ≤ l. Physically, this ensures that from every lane
there exists a path to an exit of the network. Mathematically,
this implies that the spectral radius of R (hence, of its
transpose RT ) is strictly smaller than 1: in particular, this
ensures that the matrix (I − RT ) is invertible with inverse
nonnegative inverse (I − RT )−1 =

∑
k≥0(RT )k. On the

other hand, part (ii) of Assumption 1 states that every lane
i ∈ E is reachable by some lane h ∈ E with positive external
inflow λh > 0 by a length-l path h = j0, j1, . . . , jl = i
such that Rjs−1,js > 0 for all 1 ≤ s ≤ l. In particular, this
implies that all the entries of the vector (I − RT )−1λ =∑
k≥0(RT )kλ are strictly positive.
In order to complete the description of the urban traffic

network, we need to introduce the notion of phases. These
are subsets of lanes that can be given green light simultane-
ously. We will thus identify every phase with a binary vector
p ∈ {0, 1}E whose i-th entry pi equals 1 if lane i receives
green light during phase p and 0 otherwise. The set of all
possible phases will be denoted by Ψ ⊆ {0, 1}E .

We will then study continuous-time dynamics with state
vector ρ(t) ∈ RE+ whose entries ρi(t) denote the traffic

volume on the lanes i ∈ E . Such dynamics are of the form

ρ̇i = λi +
∑
j∈E

RjiCjhj(ρ)− Cihi(ρ), ∀i ∈ E . (1)

In equation (1) above, when ρi > 0, the term hi(ρ) represents
the total fraction of time that lane i is given green light. This
can be expressed as

hi(ρ) =
∑
p∈Ψ

θp(ρ)pi , if ρi > 0 , (2)

where θp(ρ) represents the fraction of time that phase p
is activated. Here, θ(ρ) is a green light (feedback) policy:
the domain of θ is RE+, while its range is the simplex S
of probability vectors over the set of phases Ψ. In other
terms, for all network states ρ ∈ RE+, θ(ρ) is a vector with
nonnegative entries θp(ρ) indexed by the phases p ∈ Ψ, such
that

∑
p∈Ψ θp(ρ) = 1.

Remark 1: Often traffic light policies are designed in a
discrete time setting. The continuous green light policies
in this paper can be interpreted as the time-averaged green
light duration. However, the rigorous investigation of how to
connect the continuous green light policies to a discrete time
setting is a topic left for future research.

Remark 2: Equation (2) characterizes the value of hi(ρ)
only when ρi > 0. The case when ρi = 0 has to be
treated specifically in order to guarantee the physically
obvious requirement that the dynamical system (1) keeps the
nonnegative orthant RE+ invariant. In the special case when
there are only single phases, this issue is easily dealt with
for the specific green light policies considered in this paper,
as shown in Section III. For multiphases, the issue is more
delicate, as discussed more in detail in Section IV, and will
be dealt with in another publication.

Observe that if an equilibrium ρ∗ of the dynamical system
(1) exists with all positive entries, it must satisfy

0 = λi +
∑
j∈E

RjiCjhj(ρ
∗)− Cihi(ρ∗),

which can be compactly written as

λ+ (RT − I)diag (C)h(ρ∗) = 0,

or

h(ρ∗) = diag (C)
−1
a, a := (I −RT )−1λ . (3)

This argument implies the following result.
Proposition 1 (Necessary condition for stability): Let

G = (V, E , C) be a traffic network topology, R a routing
matrix adapted to G, and λ ∈ RE+ an arrival vector such that
Assumption 1 is satisfied. Let Ψ ⊆ {0, 1}E be a nonempty
set of phases, S the simplex of probability vectors over
Ψ, and θ : RE+ → S a green light policy. If the dynamical
system (1) admits an equilibrium ρ∗ with all positive entries,
then it must hold that

diag (C)
−1
a ∈ conv(Ψ) , (4)

where
a = (I −RT )−1λ . (5)



Proof: If ρ∗ is an equilibrium of (1) whose entries are
all positive, then it follows from (2) and (3) that

diag (C)
−1
a =

∑
p∈Ψ

θp(ρ)p ,

i.e., diag (C)
−1
a is a convex combination of phases.

In this paper we will focus on the case where
diag (C)

−1
a ∈ int(conv(Ψ)) and study green light policies

that admit (globally asymptotically) stable equilibria. We
will consider sets of phases that model local constraints
among the incoming lanes in each intersection v ∈ V .
Specifically, observe that the set of lanes can be partitioned as
E = ∪v∈VEv , where Ev stands for the set of lanes incoming
junction v. We will then assume that:

Assumption 2: The set of phases Ψ =
∏
v∈V Ψv , where

Ψv ⊆ {0, 1}Ev is the local set of phases at junction v ∈ V .
Moreover, each local of set of phases Ψv contains the all-
zero phase 0 ∈ Ψv .

The Assumption 2 ensures that there are no joint con-
straints among the green lights that can be activated simul-
taneously at the different intersections.

We will then focus on green light policies θ(ρ) that can
be written as the concatenation of local policies θ(v)(ρ(v))
—where ρ(v) = (ρi)i∈Ev is the vector of densities on the
lanes incoming junction v ∈ V— of the following form

θ(v)(ρ(v)) ∈ argmax
θ∈Sv

∑
i∈Ev

ρi log(
∑
p∈Ψv

θppi)+κv log θ0 , (6)

where Sv is the simplex of probability vectors over Ψv and
κv > 0 is the zero phase weight. The zero phase is introduced
to capture the fact that under normal traffic demands, a
fraction of the possible utilization is used to phase shifts.

From now on, with a slight abuse of notation, we will
refer to

h(v)(ρ(v)) =
∑
p∈Ψv

θ(v)
p (ρ(v))p , ∀v ∈ V (7)

as the maximizing green light policy.

III. STABILITY ANALYSIS IN THE SINGLE PHASE CASE

In this section we focus on the special case of phase sets
that do not allow for multiphases, i.e., where every phase
can prescribe green light to at most one lane incoming to a
junction. Specifically, we assume that the local set of phases
at every intersection is

Ψv = {p ∈ {0, 1}Ev :
∑
e∈Ev

pe ≤ 1} , ∀v ∈ V. (8)

In this case, the necessary condition for stability (4) takes
the form

ai ≥ 0 , ∀i ∈ E ,
∑
i∈Ev

ai
Ci

< 1 , ∀v ∈ V .

Moreover, the green light policy can be expressed explicitly
as in the following result.

Lemma 1: Let G = (V, E , C) be a traffic network topol-
ogy and Ψ =

∏
v∈V Ψv a set of phases satisfying (8). Then,

for every junction v ∈ V , and every strictly positive local
state vector ρ(v), the maximizing green light policy satisfies

h
(v)
i (ρ(v)) =

ρi∑
j∈Ev ρj + κv

, ∀i ∈ Ev .

Using the expression above, h(v) can be extended by conti-
nuity to ρ(v) ∈ REv+ .

Proof: Let us identify the set of lanes Ev into junction
v with the integers 1, . . . , k, where k := |Ev|. Then, for the
set of phases given by (8), the maximization problem in (6)
reduces to

maximize
∑

1≤i≤k

ρi log(θi) + κv log(θ0)

subject to
∑

0≤i≤k

θi = 1 , and θi ≥ 0 for 0 ≤ i ≤ k.

Let γ be the Lagrange multiplier associated to the equality
constraint. The Lagrangian of the relaxed problem without
nonnegativity constraints is then

f(θ, γ) =
∑

1≤i≤k

ρi log(θi) + κv log(θ0)

+ γ

 ∑
0≤i≤k

θi − 1

 .

The zero gradient conditions

∂f

∂θi
=
ρi
θi

+ γ = 0, ∀1 ≤ i ≤ k,

∂f

∂θ0
=
κv
θ0

+ γ = 0,

∂f

∂γ
=
∑

0≤i≤k

θi − 1 = 0,

then give that

θi = −ρi
γ

=
ρi∑

j∈Ev ρj + κv
≥ 0, ∀1 ≤ i ≤ k.

Since the objective function is concave, this is the maximiz-
ing green light policy.

Using the explicit expression above allows one to prove
the following stability result.

Theorem 1: Let G = (V, E , C) be a traffic network topol-
ogy, R a routing matrix, and λ ∈ RE+ an arrival vector such
that Assumption 1 is satisfied. Let Ψ =

∏
v∈V Ψv . Then the

dynamical system (1), with green light policies given by (7),
satisfying ∑

i∈Ev

ai
Ci

< 1, ∀v ∈ V, (9)

admits a globally asymptotically stable equilibrium ρ∗, where

ρ(v)∗ = κv

(
I −

(
ai
Ci

)
i∈Ev

1T

)−1(
ai
Ci

)
i∈Ev

for all v ∈ V .
Proof: Using the explicit expression for the maximizing

green light policy given in Lemma 1, together with the



stability condition (9) for invertiablity of (I − ( aiCi
)i∈Ev1

T ),
yields the expression for the limit densities.

To prove that ρ∗ is globally asymptotically stable, first
observe that ρ(t) ≥ 0 for all t ≥ 0, since when ρi = 0 for
i ∈ E , hi(ρ) = 0 and ρ̇i ≥ 0.

Introduce the function V : RE+ → R as

V (ρ) =
∑
i∈E

ρi log

(
Cihi(ρ)

ai

)
+
∑
v∈V

κv log

(
h

(v)
0 (ρ)

h
(v)
0 (ρ∗)

)
,

(10)

where, with a slight abuse of notation,

h
(v)
0 (ρ) = 1−

∑
i∈Ev

hi(ρ).

We will now prove that V (ρ) is a Lyapunov function.

Negative drift V̇ (ρ) < 0 for all ρ 6= ρ∗: By use of
Lemma 2, it holds that

dV

dt
=
∑
i∈E

∂V

∂ρi

dρi
dt

=
∑
i∈E

(∑
j∈E

Rjihj(ρ)Cj−hi(ρ)Ci+λi

)
log

(
hi(ρ)Ci
ai

)
.

Introduce ui = log
(
hi(ρ)Ci

ai

)
, then the time derivative can

be written as

dV

dt
=
∑
i∈E

∂V

∂ρi

dρi
dt

=
∑
i∈E

∑
j∈E

Rjiaje
uj − aieui + λi

ui,

or equivalently in matrix form as

dV

dt
= uT (λ− (I −RT )(diag (a) eu)).

From here, Lemma 3 ensures that the Lyapunov function
has negative drift for all u 6= 0, when u = 0, it holds that
hi(ρ) = ai

Ci
which is the equilibrium.

V (ρ∗) = 0 and V (ρ) > 0: Since hi(ρ
∗) = ai

Ci
for all

i ∈ E at equilibrium, it follows that V (ρ∗) = 0. Moreover,
if ρ 6= ρ∗, then

V (ρ) =∑
i∈E

ρi log

(
Cihi(ρ)

ai

)
+
∑
v∈V

κv log

(
hv0(ρ)

hv0(ρ∗)

)
>
∑
i∈E

ρi log

(
Cihi(ρ

∗)

ai

)
+
∑
v∈V

κv log

(
hv0(ρ∗)

hv0(ρ∗)

)
= 0,

where the strict inequality follows from the suboptimality
of the strictly concave optimization problem for ρ > 0. If
ρi = 0 for a subset Ẽ ⊆ E , the above inequality is still strict,
due to the fact that for every node v ∈ V it holds that∑

i∈Ev\Ẽv

hi(ρ
∗) + hv0(ρ∗) <

∑
i∈Ev\Ẽv

hi(ρ) + hv0(ρ).

V (ρ) radially unbounded: Due to the stability condition (9),

it is possible to choose an ε > 0, such that h̃i = ai
Ci

+ ε and
h̃

(v)
0 = 1−

∑
i∈Ev

ai
Ci
−nε where n = |Ev|. h̃(v) is a feasible

but not optimal solution to the maximization problem stated
in (7). Hence, due to suboptimality it holds that

V (ρ) >∑
i∈E

ρi log

(
1 + ε

Ci
ai

)
+
∑
v∈V

κn log

(
h̃

(v)
0

h
(v)
0 (ρ∗)

)
→∞,

when |ρ| → ∞.

IV. SIMULATION RESULTS

The green light policy proposed in this paper is imple-
mented with κ = 2.5 for a network of four intersections, as
shown in Fig. 1. Each intersection has 12 incoming lanes.
Turn ratios are assumed to be 0.17 for left turning, 0.33 for
through movement and 0.5 for right turning. The lane flow
capacities are symmetrical throughout the network and are
specified to be 1.5 for the left lane, 1.6 for the middle lane
and 1.7 for the right lane. The evolution of lane occupancies
is presented in Fig. 3.

In the first simulation we use the single phase policy
proposed in Section III. External arrival rate λi is considered
to be 0.35 for all lanes located on external roads of the
network. We assume that the arrival rate is zero for internal
lanes of network. How the dynamics evolves is shown in
Fig. 3.

To extended our example with multiphases, we introduce
four phases as illustrated in Fig. 2. The set of phases, Ψv ,
then contains the vectors[

1 0 0 0 0 0 1 0 0 0 0 0
]T
,[

0 1 1 0 0 0 0 1 1 0 0 0
]T
,[

0 0 0 1 0 0 0 0 0 1 0 0
]T
,[

0 0 0 0 1 1 0 0 0 0 1 1
]T
,

to model the four phases p1, p2, p3 and p4 respectively.
Moreover, Ψv is constructed such that if p ∈ Ψv , then
q ∈ Ψv for all q ∈ {0, 1}Ev such that q ≤ p, which then
always enables us to give zero green light to an empty lane
in the simulations without disabling the whole phase. In
this case larger external arrival rate can be used, and we
let λi = 1. The dynamics for the multiphase case is shown
in Fig. 4.

The simulations show that even if phases that allows
several lanes to activated at the same time are introduced,
the dynamical system seems to remain stable. An argument
along the lines of the one developed in the single phase
case allows one to prove the existence of a locally stable
equilibrium. However, further theoretical work is needed to
work out how different phase constructions actually effects
the existence and uniqueness of equilibrium in the multi-
phase case. For instance, the simulation shows that some
of the lanes will have zero occupancy when multiphases are
allowed. Another issue is to find an efficient numerical solver
for the maximization problem.



Fig. 1: Network of four intersections used in the simulations

1

12

Fig. 2: Illustration of a four phase architecture at an intersec-
tion, where the incoming lanes are numbered counterclock-
wise from 1 to 12

V. CONCLUSION

We studied stability of some decentralized traffic signal
control policies for urban traffic networks. Our main theo-
retical result shows that, in the case when only single phases
are allowed, the resulting traffic network dynamics admit
a globally asymptotically stable equilibrium, provided that
the arrival rates belong to the interior of a certain stability
polytope. These results rely on the use some entropy-like
Lyapunov functions previously considered in the context of
stochastic queuing networks.

Future works should consider a theoretical investigation of
multiphases, dynamic route choice behavior, finite capacities
on lane occupancies, and designing phases with respect to
different performance measurements such as throughput and
delay.
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APPENDIX

ADDITIONAL LEMMAS

Lemma 2: Let V (ρ) be as in (10), then for all ρ > 0,

∂V (ρ)

∂ρi
= log

(
Cihi(ρ)

ai

)
.

Proof: Let ρξ be a vector, such that ρξi = ρi + ξ and
ρξj = ρj , j 6= i. Then

V (ρξ)− V (ρ) =∑
i∈E

ρξi log

(
Cihi(ρ

ξ)

ai

)
+
∑
v∈V

κv log

(
h

(v)
0 (ρξ)

h
(v)
0 (ρ∗)

)

−

(∑
i∈E

ρi log

(
Cihi(ρ)

ai

)
+
∑
v∈V

κv log

(
h

(v)
0 (ρ)

h
(v)
0 (ρ∗)

))

≥
∑
i∈E

ρξi log

(
Cihi(ρ)

ai

)
+
∑
v∈V

κv log

(
h

(v)
0 (ρ)

h
(v)
0 (ρ∗)

)

−

(∑
i∈E

ρi log

(
Cihi(ρ)

ai

)
+
∑
v∈V

κv log

(
h

(v)
0 (ρ)

h
(v)
0 (ρ∗)

))

= ξ log

(
Cihi(ρ)

ai

)
,

where the inequality follows from the suboptimality of the
solution. In the same manner, we have that

V (ρξ)− V (ρ) ≤ ξ log

(
Cihi(ρ

ξ)

ai

)
.

The combination of the two inequalities yields

log

(
Cihi(ρ)

ai

)
≤ 1

ξ

(
V (ρξ)− V (ρ)

)
≤ log

(
Cihi(ρ

ξ)

ai

)
.

Letting ξ → 0 proves the lemma.

Lemma 3: Let R be a routing matrix and λ an arrival
vector satisfying Assumption 1. Then, for a ∈ RE+ satisfying
the relation,

a = (I −RT )−1λ,

and for any u ∈ RE+ it holds that

uT (λ− (I −RT )(diag (a) eu)) ≤ 0,

with equality if and only if u = 0.
Proof: See [15, Lemma 7].


