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Abstract— This paper proposes a receding-horizon, game-
theoretic charging planning mechanism for electric ride-hailing
markets. As the demand for ride-hailing services continues
to surge and governments advocate for stricter environmental
regulations, integrating electric vehicles into these markets
becomes inevitable. The proposed framework addresses the
challenges posed by dynamic demand patterns, fluctuating
energy costs, and competitive dynamics inherent in such
markets. Leveraging the concept of receding-horizon games,
we propose a method to optimize proactive dispatching of
vehicles for recharging over a predefined time horizon. We
integrate a modified Tullock contest that accounts for customer
abandonment due to long waiting times to model the expected
market share, and by factoring in the demand-based electricity
charging, we construct a game capturing interactions between
two companies over the time horizon. For this game, we first
establish the existence and uniqueness of the Nash equilibrium
and then present a semi-decentralized, iterative method to
compute it. Finally, the method is evaluated in an open-loop
and a closed-loop manner in a simulated numerical case study.

I. INRODUCTION

With the ever-increasing spectra of services provided
by ride-hailing companies, the ride-hailing markets have
arguably solidified their position as transformative forces
in urban transportation. Moreover, as the demand for their
services continues to grow and governments worldwide push
for stricter environmental regulations, it is not unlikely that
ride-hailing markets operating electric vehicles (EVs) will
play a significant role in shaping the future of urban mobility.
Though we are already experiencing a rapid adoption of
EVs [1], integrating them in the so-called electric ride-
hailing markets characterized by dynamic demand patterns,
fluctuating energy costs, and competitive market dynamics,
poses various challenges in ensuring company’s operational
efficiency and maximizing its profitability [2], [3]. As com-
pany fleets continue to rise, strategic charging scheduling will
become a crucial aspect of their operational management, ne-
cessitating considerations of battery discharge rates, demand
forecasting, and charging price predictions. As illustrated in
Figure 1, a ride-hailing company will aim to be proactive and
optimize the number of vehicles dispatched for recharging at
each time interval within a predefined horizon. In essence,
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Fig. 1. The charging planning problem involves two companies solving
a scheduling problem at each time step k, considering the current battery
state of their fleet, forecasted ride-hailing demand, and charging prices over
a time horizon T .

given that the service demand and charging prices are time-
dependent, a company might decide to charge some of the
vehicles earlier, before reaching a very low battery level, so
as to be able to claim a larger market share during the high
demand period. While strategically anticipating forthcoming
demand and charging price fluctuations, considering that
vehicles dispatched for recharging cannot serve the demand,
the optimal charging schedule will primarily be shaped by the
expected market share the company can secure at each time
interval, all while taking into account the temporal evolution
of the aggregate battery level of the fleet. The primary goal
of the company is to maximize its profit, defined as the
difference between the revenue generated from providing
ride-hailing services in a competitive market and the total
charging costs incurred over the time horizon.

Game theory has emerged as a promising tool for tackling
the EV charging problem [4]–[7] and integrating it with the
intricate dynamics of ride-hailing markets [8]–[12]. How-
ever, existing studies predominantly focus on static setups,
meaning that they model interactions between companies
and compute the equilibrium for only one snapshot of the
day. In contrast, dynamic mechanisms, taking into account
competing interactions over a certain time period, are com-
mon in the literature on demand-side management (DSM). In
terms of dynamic modeling, the framework presented in this
paper shares similarities with the ones presented in [13]–[16],
wherein authors introduce the concepts of receding-horizon
games (RHG) inspired by the well-established paradigm of
model predictive control (MPC). Nevertheless, the game
played over the horizon differs significantly from the one
analyzed in this paper, as they primarily focus on quadratic or
aggregative games, for which there exists an extensive body
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of literature on efficiently computing the Nash equilibrium.
In this paper, we propose a receding-horizon, game-

theoretic charging planning mechanism for a market com-
prising two ride-hailing companies. Specifically, for each
company, we adopt a simplified aggregate model of battery
discharging, resulting in a linear state-space model. Under
this model, and similar to [12], we treat the expected market
share from serving the ride-hailing demand at each time
interval within the planning horizon as a modified Tullock
contest [17], [18] that integrates information about customer
abandonment. This is different from existing literature that
incorporates standard Tullock contests in a sense that compa-
nies will not claim the whole profit that can be earned during
a particular time interval, but rather a certain portion of it
will be forfeited due to customers canceling their service
requests owing to prolonged waiting times. To the best of
our knowledge, in the context of receding-horizon games,
this framework is the first one to integrate a Tullock-based
expected revenue model with demand-driven charging costs
to characterize players’ profits at each time interval within
the horizon. From the theoretical perspective, one of the main
contributions of this paper encompasses establishing both
the existence and uniqueness of the Nash equilibrium for
the game played across the predefined horizon. Additionally,
we present an iterative algorithm with provable convergence
guarantees for computing the game’s Nash equilibrium in
a semi-decentralized manner. In terms of practical appli-
cability, we design a simulated case study to evaluate the
performance of the proposed method. We assess it both when
applied in an open-loop fashion, where the planning horizon
matches the length of the analyzed time frame, and in a
closed-loop, receding-horizon fashion, where the planning
horizon is shorter than the length of the analyzed time frame.

The paper is outlined as follows: the rest of this section
introduces some basic notation. In Section II, we present
the market model and the general problem statement. Then,
in Section III, we outline our main methodological and
theoretical results and conclude with Sections IV and V,
where we illustrate the performance of our method in a
numerical case study and propose ideas for future research.

Notation: Let R(+) and Z(+) denote the sets of (non-
negative) real and integer numbers. Let 1m and Im be the
vector of all ones and a unit matrix of size m. For any
T ∈ Z+, we let ZT = {0, 1, 2, ..., T − 1}. If A is a finite
set of vectors xi, we define x := col((xi)i∈A) to be their
concatenation. For a vector x ∈ Rn, we let diag(x) ∈
Rn×n denote a diagonal matrix whose elements on the
diagonal correspond to vector x. If A is a set of k matrices
Ai ∈ Rm×n, then blkdiag({Ai}i∈A) ∈ Rkm×kn denotes the
corresponding block-diagonal matrix and vstack((Ai)i∈A) ∈
Rkm×n denotes their vertical concatenation.

II. MODEL

We consider a ride-hailing market comprising two com-
panies i ∈ {a, b}, operating fleets of Xa and Xb electric
vehicles respectively. Over a horizon of T ∈ N future
time intervals, these companies acquire estimates of relevant

exogenous parameters and aim to optimize the management
of their electric fleets. At every time interval k ∈ ZT , the
aggregate battery state of company i’s fleet is described by
a vector xi[k] := col((xj

i [k])j∈B) ∈ Rm
+ , where m ∈ N

denotes the number of distinct battery level categories and
B = Zm. Namely, we assume that for all k ∈ ZT , each of
the Xi vehicles belongs to one of the m categories given its
current battery level, that xj

i [k] ≥ 0 denotes the total number
of vehicles in category j ∈ B, and that 1T

mxi[k] = Xi.
Vehicles can be categorized into three groups based on

their status: those currently in operation, those dispatched
for charging, and those temporarily parked. During each time
interval k ∈ ZT , every company determines the quantity of
vehicles from each category j ∈ B, i.e., uj

i [k] ∈ R+, to dis-
patch for recharging, i.e., every company i ∈ {a, b} chooses a
vector-valued control input ui[k] := col((uj

i [k])j∈B) ∈ Rm
+ .

To describe the state of charge on the aggregate level of the
fleet, we adopt the following simplifying assumptions:

1) Vehicles dispatched for charging are unavailable to
serve the ride-hailing demand during the respective
interval k ∈ ZT . The ones dispatched from categories
B \ {m − 1} transit from the current category to the
adjacent higher one at the end of the interval, whereas
the ones from category m−1 remain in the same one.

2) Battery state of the vehicles on the lowest level, i.e.,
level 0, is deemed critical so they cannot serve the
demand. They either have to be parked or sent to
recharge during the particular interval k ∈ ZT .

3) Undispatched vehicles from categories B\{0} serve the
ride-hailing demand in the region during the respective
interval. For every company i and every battery level
category j ∈ B, αj

i ∈ [0, 1] determines the portion of
undispatched vehicles from category j that will remain
in the same category at the end of the interval while
the remaining ones transit to the next lower category.

With this in mind, for every company i ∈ {a, b}, we model
the dynamics of the fleet’s state of charge as xi[k + 1] =
col((f j

i (xi[k], ui[k]))j∈B) for particularly chosen f j
i : Rm

+ ×
Rm

+ → R+. If the initial state of the fleet, i.e., xi[0] = x0
i is

known, then these conditions form a linear state-space model

xi[k + 1] = Aixi[k] +Biui[k] , (1)

with Ai := Ai({αj
i}j∈B) and Bi := Bi({αj

i}j∈B) being
adequately chosen square matrices. By introducing the vector
ΛT = [1, . . . , 1, 0] of size m, we can establish company i’s
count of operating vehicles at k ∈ ZT , i.e., ϕi[k] ∈ R+, as

ϕi[k] = ΛT (xi[k]− ui[k]) , (2)

and consequently form Φi := col((ϕi[k])k∈ZT
) and Ui :=

col((ui[k])k∈ZT
) describing company i’s operation over the

whole time horizon. In the same manner, we define for the
rival company ϕ−i[k] ∈ R+, Φ−i := col((ϕ−i[k])k∈ZT

),
u−i[k] ∈ Rm

+ , and U−i := col((u−i[k])k∈ZT
) that depict

the number of operating and dispatched vehicles. Finally, it
is important to note that for the dynamics to be feasible,

0 ≤ uj
i [k] ≤ xj

i [k] (3)



needs to hold for every i ∈ {a, b}, j ∈ B, and k ∈ ZT .

A. Problem statement

The goal of every ride-hailing company is to optimize
their profit within the time horizon ZT , by strategically
determining the number of vehicles to dispatch for charging
at each time interval. If we let Zi ∈ RT+mT

+ be given by
Zi := [ΦT

i , UT
i ]

T , then, we can model the profit of each
company i ∈ {a, b} over the whole time horizon as:

Ji(Zi,Z−i) =∑
k∈ZT

Jmarket
i,k (ϕi[k], ϕ−i[k])− Jcharge

i,k (ui[k], u−i[k]) .

Here, Jmarket
i,k (ϕi[k], ϕ−i[k]) denotes the expected ride-hailing

market share the company can secure at k ∈ ZT and
Jcharge
i,k (ui[k], u−i[k]) represents the average cost of charging

for the currently dispatched vehicles.
The expected revenue generated from serving the ride-

hailing market varies over time, as demand typically rises
during peak-hour periods. Moreover, time intervals with
higher anticipated demand call for a greater number of op-
erating vehicles to reduce the profit loss caused by customer
abandonments resulting from extended waiting times for
vehicle assignments. Similar to [12], we assume a portion
of the revenue from ride-hailing requests will constantly be
forfeited and hence adopt the following market model:

Jmarket
i,k (ϕi[k], ϕ−i[k]) = n[k]r[k]

ϕi[k]

ϕi[k] + ϕ−i[k] + ε[k]
,

(4)
where n[k] > 0 denotes the average number of requests,
r[k] > 0 denotes the average revenue per request, and ε[k] >
0 models the profit loss due to abandonments at k ∈ ZT .
Specifically, the time distribution of abandonments, given by
ε[k] > 0, dictates the portion of the total potential profit
forfeited over the horizon:

lT =
∑
k∈ZT

n[k]r[k]
ε[k]

ϕi[k] + ϕ−i[k] + ε[k]
.

At every k ∈ ZT , it is evident that the profit loss decreases
as the total number of vehicles participating in the market
at that time interval, i.e., ϕi[k] + ϕ−i[k], increases. Thus,
although similar to classical Tullock contests [17]–[19] that
assume the whole potential profit would be shared between
the companies, (4) acknowledges that reduced participation
in the market leads to diminished profits for both companies.

We adopt a setup where the price of charging during time
slot k ∈ ZT for each category j ∈ Zm, denoted as pj [k] ∈
R+, is determined by the total charging demand within that
particular category, i.e., pj [k] = cj [k]d[k](uj

i [k] + uj
−i[k]).

Here, d[k] > 0 and cj [k] > 0 represent the exogenous pa-
rameters depicting the average charging demand per vehicle
and the price per unit of energy associated with battery level
j ∈ Zm. In this context, we perceive d[k] as influenced
by battery discharge rates of the vehicles and the average
vehicle speed in the region that fluctuates throughout the day
based on network congestion. Assuming that idle vehicles

continue searching for passengers and that their discharge
rates are comparable, we simplify the setup by regarding
this parameter as company-independent. Finally, the total
charging cost at k ∈ ZT is Jcharge

i,k (ui[k], u−i[k]) given by

Jcharge
i,k (ui[k], u−i[k]) =

∑
j∈Zm

pj [k]d[k]uj
i [k] .

If we let β[k] := n[k]r[k], qj [k] := cj [k]d
2
[k], W [k] :=

diag({qj [k]}j∈Zm
), and W := blkdiag({W [k]}k∈ZT

), then
the profit of each company can be compactly written as

Ji(Zi,Z−i) = g1(Φi,Φ−i) + g2(Ui,U−i) , (5)

where g1(Φi,Φ−i) and g2(Ui,U−i) are given by:

g1(Φi,Φ−i) :=
∑
k∈ZT

β[k]ϕi[k]

ϕi[k] + ϕ−i[k] + ε[k]
,

g2(Ui,U−i) := −UT
i W(Ui +U−i) .

If for every i ∈ {a, b} we define a set Zi ⊆ RT+mT
+ as

Zi := {Zi | xi[0] = x0
i ∧ (1), (2), and (3) hold}, then the

interactions between the two companies can be described
as a two-player game G defined by a set of coupled best-
response optimization problems

G :=
{
max
Zi∈Zi

g1(Φi,Φ−i)+g2(Ui,U−i),∀i ∈ {a, b}
}
. (6)

A no-regret solution for the companies is given by a pair of
strategies that constitute a Nash equilibrium (NE). Namely,
if Z ∈ Z with Z := Za × Zb, denotes the joint strategy of
the two companies, i.e., Z := col((Zi)i∈{a,b}), then the NE
concept can be formally introduced as in Definition 1.

Definition 1 (Nash equilibrium): A joint strategy Z ∈ Z
is a Nash equilibrium of G given by (6), if for all i ∈ {a, b}
and all Zi ∈ Zi it holds that Ji(Zi,Z−i) ≥ Ji(Zi,Z−i).

Computing the NE strategy for a two-player, receding-
horizon game defined by ride-hailing market (6) essentially
boils down to solving a charging planning problem for the
two companies over the horizon T . In that sense, the setup
of (6) resembles the standard concept of Model Predictive
Control (MPC) and can be used to also establish feedback
control policies, should the companies wish to optimize
expected profit within a time frame Ttotal that is longer than
the planning horizon T . Therefore, in the following section
we first prove the existence and uniqueness of the NE for the
game G and then proceed to present a method to compute it.

III. CHARACTERIZING THE NASH EQUILIBRIA

To begin the analysis, we first direct our attention to the
constraint set Zi. In order to reformulate (3) as a constraint
on Zi, we recall that the state trajectory of the linear
system (1) is given by xi[k] = Ak

i x
0
i +

∑k−1
l=0 Ak−l−1

i Biui[l]
for xi[0] = x0

i . Combining this with the right-hand side
of (3), for every k ≥ 0 we obtain[

Ak−1
i Bi|Ak−2

i Bi| . . . |AiBi|Bi| − Im
]
U0:k
i ≥ −Ak

i x
0
i ,

(7)



where the inequality is element-wise and U0:k
i ∈ R(k+1)m

+

is the concatenation of control inputs corresponding to time
intervals 0 ≤ l ≤ k, i.e., U0:k

i := col((ui[l])l∈Zk+1
). For

every k ∈ R+, let us now define ri[k] := −Ak
i x

0
i and

Li[k] =
[
Ak−1

i Bi| . . . |AiBi|Bi| − Im|0m×m(T−k−1)

]
.

that will help us connect player i’s optimization variable
with constraints (7). It is clear that company i’s control
input over the horizon T satisfies Ui = U0:T−1

i . Hence,
for 0 ≤ k ≤ T − 1, each constraint (7) can be represented
as Li[k]Ui ≥ ri[k]. Similarly, for every k ≥ 0, condition (2)
gives us ϕi[k] + ΛT

[
Ak−1

i Bi| . . . |AiBi|Bi| − Im
]
U0:k
i =

−ΛTAk
i x

0
i , which for k satisfying 0 ≤ k ≤ T − 1

gives ϕi[k] + ΛT Li[k]Ui = ΛT ri[k]. If we stack ma-
trices Li[k] and vectors ri[k] for k ∈ ZT , i.e., Li =
vstack((Li[k])k∈ZT

) and ri = col((ri[k])k∈ZT
), then the set

Zi ⊆ RT+mT
+ can be described by a polytope

Zi = {Zi | Linq,iZi ≤ rinq,i ∧ Leq,iZi = req,i} , (8)

with Linq,i =

[
0mT×T −Li

0mT×T −ImT

]
, rTinq,i = −[rTi ; 0T

mT ],

Leq,i = [−IT ; (IT ⊗ ΛT )Li] and req,i = (IT ⊗ ΛT )ri. By
construction, (1) and (3) ensure that Zi is compact. Without
loss of generality, we adopt the following assumption.

Assumption 1: Let game G be defined as (6) with poly-
topic sets Zi as in (8). For every i ∈ {a, b}, x0

i ∈ Rm
+ is

chosen such that Zi satisfies Slater’s constraint qualification.

Based on the structure of the profit functions (5) and
constraint sets (8), we can now show that there exists a
unique NE of the game G defined in (6).

Theorem 1: Let game G be defined as (6), with feasible
sets Zi defined by (8). If Assumption 1 holds, then G admits
a unique Nash equilibrium.

The proof is given in the extended version of our paper.

Having established the existence and uniqueness of the
NE, in the following subsection we present a method based
on theory of Variational inequalities [20] to compute it.

A. Computing the Nash equilibrium

Clearly, game G in (6) is equivalent to game G given by

G :=

{
min
Zi∈Zi

−Ji(Zi,Z−i),∀i ∈ {a, b}
}
. (9)

Looking at the structure of G, we observe that the uncoupled
nature of the constraint sets Zi, gives rise to a unique NE
that coincides with the solution of the Variational Inequality
problem VI(Z, F (Z)) [21, Th.2], where Z = Za × Zb and
F (Z) = −g(Z,12) given by

F (Z) := −
[(

∂Ja

∂Φa

)T
,
(
∂Ja

∂Ua

)T
,
(
∂Jb

∂Φb

)T
,
(
∂Jb

∂Ub

)T]T
(10)

represents game G’s pseudogradient. Based on the structure
of F (Z), various iterative methods can be employed to com-
pute the solution of VI(Z, F (Z)). Hence, we first establish
the following characteristics of the pseudogradient F (Z).

Lemma 1: Let game G be defined by (8) and (9), with the
pseudogradient F (Z) given by (10). There exist L, µ > 0
such that for all Z1,Z2 ∈ Z , it holds that

∥F (Z1)− F (Z2)∥2 ≤ L ∥Z1 − Z2∥2 ,
(F (Z1)− F (Z2))

T (Z1−Z2) ≥ µ ∥Z1 − Z2∥22 ,

i.e, F (Z) is L-Lipshitz continuous and µ-strongly monotone.
The proof is given in the extended version of our paper.

Based on Lemma 1, we can now outline in Theorem 2 a
semi-decentralized iterative scheme that provably converges
to the unique Nash equilibrium of the game defined in (6).

Theorem 2: Let game G be defined as (6), with the initial
conditions x0

i such that constraint sets Zi given by (8) satisfy
Assumption 1 for i ∈ {a, b}. Moreover, let Z0

a ∈ Za

and Z0
b ∈ Zb be any feasible decision vectors for the

two companies. Then, the iterative update scheme Zt+1 =
ΠZ [Zt − γF (Zt)], that can be executed locally as,

Zt+1
i = ΠZi

[
Zt

i + γ∇Zi
Ji(Z

t
i,Z

t
−i)

]
, (11)

converges to the unique NE of G for 0 < γ < 2µ
L2 , where

L, µ > 0 represent the Lipshitz and strong monotonicity con-
stants of the pseudogradient operator F (Z) defined in (10).

The proof is given in the extended version of our paper.

B. Monitoring convergence and stopping criteria

In essence, Theorem 2 ensures the existence of a suffi-
ciently small fixed step size γ > 0 that guarantees the con-
vergence of (11). However, neither Theorem 1 nor Lemma 1
offer a method to explicitly determine the upper bound on γ
as the Lipschitz and the strong monotonicity constants, L
and µ, depend on the system dynamics and the initial states
x0
i used to initialize (11). To circumvent the need to estimate

these constants through exhaustive grid-search across the
space Z for each game instance, we propose a combination
of a standard Armijo step-size rule with a termination cri-
terion based on the Karush-Kuhn-Tucker (KKT) optimality
conditions of the best-response optimization problems.

Namely, for Z ∈ Z to be a NE of (6), for each i ∈ {a, b},
the strategy Zi ∈ Zi has to solve the best-response problem

minimize
Zi

− g1(Φi,Φ−i)− g2(Ui,U−i)

subject to Linq,iZi ≤ rinq,i ∧ Leq,iZi = req,i. (12a)

Since this is a convex problem, and Z is compact and
convex, characterizing the NE boils down to examining
the KKT conditions associated with the Lagrangian Li :=
−Ji(Zi,Z−i) + λT

i (Linq,iZi − rinq,i) + νTi (Leq,iZi − req,i),
with λi ∈ R2mT

+ and νi ∈ RT as dual variables associated
with the inequality and equality constraints of each player
i ∈ {a, b}. With that in mind, we can construct the following
optimality test for Z ∈ Z .

Lemma 2 (Optimality test): For players i ∈ {a, b}, let the
best-response optimization problem related to game (9) be
defined by (12). Furthermore, for Z ∈ Z , let the set

Ai(Zi) := {j ∈ [1, 2mT ] ∩ N | Lj
inq,iZi = rjinq,i},



Algorithm 1 Computing the Nash equilibrium

1: Input: Ai, Bi, T , ε, β, W, x0
i , γ, η, tol, maxiter

2: Output: Za,Zb

3: Zi = CreateConstraints(T,Ai, Bi, x
0
i ); ▷ For i ∈ {a, b}

4: Z0
i = Initialize(Zi, x

0
i );

5: l = 0; Z← col((Z0
i )i∈{a,b});

6: while
∑

i∈{a,b} δ
∗
i (Z) > tol do ▷ In parallel for i

7: γ = ηlγ; t = 0;
8: Zt

i ← Z0
i ;

9: Zt+1
i = ΠZi

[
Zt

i + γ∇Zi
Ji(Z

t
i,Z

t
−i)

]
;

10: while
∥∥Zt+1

i − Zt
i

∥∥ > tol and t < maxiter do
11: Zt

i ← Zt+1
i ;

12: Zt+1
i = ΠZi

[
Zt

i + γ∇Zi
Ji(Z

t
i,Z

t
−i)

]
;

13: t← t+ 1;
14: end while
15: Z← col((Zt+1

i )i∈{a,b})
16: l← l + 1
17: end while

represent the indices of active inequality constraints in (12a),
with Lj

inq,i being the j-th row of Linq,i. Let δ∗i (Z) ∈ R+ be

δ∗i (Z) = min
λi,νi

∥∥−∇ZiJi(Zi,Z−i) + LT
inq,iλi + LT

eq,iνi
∥∥2
2

subject to λj
i ≥ 0 for j ∈ Ai(Zi) and λj

i = 0 otherwise.

Then, Z ∈ Z is the solution of the best-response optimization
problem (12) if and only if δ∗a(Z) = δ∗b (Z) = 0.

The proof is given in the extended version of our paper.

We can now combine Lemma 2 with an Armijo-like ap-
proach, to design a complete iterative procedure independent
of constants L and µ that are specific to the game.

Namely, for a priori chosen constants γ > 0 and η ∈
(0, 1), the complete procedure is outlined in Algorithm 1. For
a particular step size γ = ηlγ with l ∈ Z+, the inner loop
is used to monitor convergence of the iterates Zt

i obtained
using scheme (11). After convergence or timeout have been
detected, Lemma 2 is then used in the condition of the
outer loop to check optimality of the obtained solution. If
conditions of the optimality test are satisfied, the obtained
solution corresponds to the NE of game (6). If not, the step
size is reduced and the procedure is repeated. Finally, it is
important to note that the outer loop will always terminate
as Theorem 2 guarantees the existence of a sufficiently small
step size for which (11) converges to the NE of (6).

C. Receding-horizon implementation

In essence, we can deploy Algorithm 1 in two ways:
1) In an open-loop manner, i.e., the exogenous parameters

can be estimated for the whole time frame so the
planning horizon can be chosen as T = Ttotal.

2) In a closed-loop, MPC-like, receding-horizon fashion,
i.e., the planning horizon is T < Ttotal, for example
due to lack of accurate predictions, and, at each time
step k, the companies apply only the first element of
the predicted control trajectory.
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Fig. 2. Time profiles of β[k], q[k] and ε[k], determining the expected
ride-hailing revenue, charging costs and customer abandonments.

When applied in the open-loop manner, Algorithm 1 is
executed once to compute Ttotal control inputs. On the other
hand, running it in a receding-horizon fashion requires the
complete procedure to be repeated ntotal = Ttotal−T+1 times.
For time intervals 0 ≤ k ≤ ntotal−1, the planning is executed
with horizon T and only the first element of the predicted
control trajectory is applied, i.e., the first Ttotal − T control
inputs yield a closed-loop system of the form xi[k + 1] =
Aixi[k] + Biκi(xi[k], T ), where κi(xi[k], T ) extracts ui[0]
from the output Zi of Algortihm 1 when initialized with
x0
i = xi[k]. Conversely, the control inputs for the last T

time intervals are applied in the open-loop fashion and are
calculated in the final execution step, i.e., for k = ntotal.

In the subsequent section, we introduce a numerical case
study wherein the proposed method will be utilized both
as an open-loop control strategy and in a receding-horizon
manner to formulate feedback policies inspired by MPC.

IV. NUMERICAL EXAMPLE

To demonstrate the effectiveness of the proposed method,
we construct a scenario spanning Ttotal = 9 time intervals,
depicting varying levels of ride-hailing demand, electricity
costs, and anticipated customer abandonments, as illustrated
in Figure 2. For simplicity, we assume that each vehicle’s
battery level can be categorized as green (j = 2), yellow
(j = 1), or red (j = 0). We further assume that the
coefficients in model (1) satisfy αj

i = 0 for all i ∈ {a, b} and
j ∈ Z3, and that the charging cost coefficients are identical
across all battery level categories, i.e., qj [k] = q[k] for all
j ∈ Z3. Regarding the initial state of the electric fleets, we
assume that x0

a = [400, 50, 10]T and x0
b = [800, 50, 10]T . As

outlined in Section III, we test Algorithm 1 in an open-loop
manner, i.e., with T = Ttotal, and in a closed-loop manner,
i.e., with T < Ttotal. In both cases we set the tolerance to
0.01 and initialize the step size with γ = 0.05 and µ = 0.5.

Figure 3 depicts the evolution of the optimal inputs when
employing the proposed method in an open-loop fashion, i.e.,
with a planning horizon of T = 9. It can be observed that
both companies predominantly utilize intervals characterized
by lower electricity prices to recharge their vehicles, aiming
to strike a balance between maintaining a high number
of operational vehicles during peak demand periods and
ensuring that vehicle batteries remain sufficiently charged
to prevent forcing them to park. Furthermore, towards the
end of the analyzed time period, both companies opt not to
charge but rather to park their vehicles. This is anticipated
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Fig. 3. Open loop: Evolution of the applied control inputs during Ttotal.

TABLE I
ATTAINED PROFITS FOR DIFFERENT PLANNING HORIZONS

Horizon Company a Company b Lost profit

T = 3 88315 75275 250363
T = 6 143859 207973 42622
T = 9 144999 211129 38115

since there are no parking costs associated, and there is no
longer a need to proactively charge vehicles.

To examine how the performance of the proposed method
varies with different planning horizons T in a receding-
horizon approach, we also execute the procedure for T = 3
and T = 6 and apply it in the receding horizon fashion.
Table I summarizes the total attained profits of the com-
panies for different horizons. As expected, extending the
planning horizon enables companies to proactively anticipate
fluctuations in demand and charging costs, facilitating better
charging strategies and ultimately leading to higher overall
profits. Moreover, with longer planning horizons, companies
tend to better plan their participation, leading to smaller
amounts of profit forfeited due to customer abandonment.

V. CONCLUSIONS

In this work, we presented a dynamic, game-theoretic
framework for optimizing the charging schedule of ride-
hailing companies over a predefined time period for which
the estimates of the exogenous parameters are available.
The proposed setup takes into account the varying time
profiles of the expected ride-hailing demand, charging prices,
and expected customer abandonments, all incorporated in a
modified Tullock-based profit function. For this game that
describes interactions between two ride-hailing companies
over a fixed planning horizon, we were able to show that
there exists a unique NE that can be computed using a semi-
decentralized iterative method, requiring little information
exchange. The proposed method is tested as an open-loop
planning module and in a receding-horizon manner, showing
better charging management for longer planning horizons.

In the future, we aim to examine the closed-loop sta-
bility in an attempt to also provide robustness guarantees.
Moreover, we hope to extend the analysis to cases with
more than two players and setups where companies have

different estimates of the relevant parameters. We also plan
to investigate how electricity market models can be integrated
with the proposed model.
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