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Abstract— With growing traffic demands, transportation net-
works become more and more congested and prone to disrup-
tions. In this paper, we study how different perturbations affect
the free flow equilibria, i.e., equilibria where no congestion ef-
fects are present, in transportation networks. More specifically,
if and when the equilibrium of the perturbed dynamics is still
in free flow. A generalized cell transmission model models the
dynamics of the transportation network, and the perturbations
considered are perturbations in the exogenous inflows, flow
capacity drops, and perturbations in the routing, i.e., when
drivers deviate from their normal route preferences. The paper
also shows that social optimum assignments in traffic networks,
may not be the most robust ones.

I. INTRODUCTION

Ever growing traffic loads, limited infrastructure capacity,
and fast increasing interconnectedness and complexity are
making the transportation system more and more sensitive to
disturbances and prone to disruptions. Being able to quantify
robustness of transportation networks is of importance as
many of the control actions rely on estimation techniques
whose uncertainty should be taken into account when, e.g.,
designing adaptive traffic signal controls and variable speed
limits or giving route recommendations.

This paper is concerned with the robustness analysis
of dynamical traffic flows in transportation networks. We
model the network traffic flow dynamics using a generalized
continuous time version of the cell transmission model
(CTM) originally presented in [1], [2] as a discretization and
network generalization of the Lighthill-Whitham-Richards
traffic flow model [3], [4]. We study robustness of so-called
free-flow equilibrium points in such models with respect to
perturbations in the exogenous inflows, the cell capacities,
and the routing matrix. To such perturbations we assign a
cost function and then quantify the transportation network’s
robustness as the minimum cost of a perturbation such that
the network does not admit a free-flow equilibrium anymore.
We refer to this minimum cost as the margin of robustness
of the transportation network and provide explicit formulas
for it. Our results extend those in the M.Sc. thesis [5].
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Stability of the CTM and of its continuous-time gener-
alizations has been studied in [6] and [7], [8], [9], [10],
respectively. Equilibrium selection and optimal control prob-
lems for these models have been studied in [11], [12]. The
results in this paper should be compared with those in [13],
[14], [15], [16], where the margin of resilience of dynamical
flow networks controlled by distributed feedback policies is
analyzed, also in the presence of cascading failure mecha-
nisms. Differently from those works, this paper focuses on
robustness of the dynamical flow network with a prescribed
routing matrix. This makes the analysis in this paper different
from other previous approaches in, e.g, [17], [18] where the
robustness of dynamically assigned routing is studied.

The outline of the paper is as follows: The rest of this
section is devoted to some basic notation that will be used
throughout the paper. In Section II we present the dynamical
model for transportation networks, and specify what we
mean with a free flow equilibrium. In Section III we study
how perturbations in the exogenous inflows and maximum
flow capacities affect the free flow equilibrium, and exploit
the similarity between those two perturbations. We also
provide an example of the robustness of a system-optimal
equilibrium, and show that it may not be the most robust
equilibria. In Section IV, perturbations in the routing are
considered.

A. Notation

We let R(+) denote the set of (non-negative) reals. For
finite set A, we denote RA(+) the set of (non-negative) vectors
indexed by the elements of the set A. Inequalities between
vectors means element-wise inequalities, i.e., two vectors
a, b ∈ RA, a ≤ b respectively a < b, means that ai ≤ bi
respectively ai < bi for all i ∈ A. We use 1 to denote the
all 1 vector with appropriate dimension, and 1(i) denotes a
vector with all zeros, expect for a 1-element at position i.
The indicator function δ

(j)
i is 0 when i 6= j, and 1 when

i = j.

II. MODEL

We model the topology of the transportation network as
a directed multi-graph G = (V, E) where V is the set of
nodes and E ⊆ V × V is the multi-set of directed links. We
will assume that G does not contain any self-loops, while
allowing for the presence of parallel links (hence the prefix
“multi”). The links i ∈ E will represent cells. For a cell i ∈ E ,
we will let E+i ⊂ E denote the set of out-neighboring cells,
i.e., outflow from one cell i, will either leave the network or
proceed to one of the cells in E+i .



To each cell i ∈ E , two functions are assigned, the demand
and supply functions. They both depend on the traffic volume
in the cell. The demand function, denoted by ϕi(xi), is
non-decreasing, concave, and such that ϕi(0) = 0. The
supply function, denoted σi(xi), is assumed to be Lipschitz-
continuous, non-increasing, concave and such that σi(xi) =
0 for all xi ≥ xmax

i , where xmax
i > 0. From the demand and

supply function, the cell’s maximum flow capacity Ci can
determined as

Ci = max
xi≥0

(min(ϕi(xi), σi(xi))) . (1)

The vector of all cells’ capacities is denoted by C ∈ RE+.
To a subset of cells I ⊆ E in the transportation network,

there may be an exogenous inflow of traffic flow. We denote
the vector of such exogenous inflows by u ∈ RE+, with the
property that ui = 0 for every i ∈ E \ I.

To model how the traffic propagate through network, we
introduce the routing matrix R ∈ RE×E+ . An entry Rij of the
routing matrix represents the fraction of the outflow from
cell i that will proceed directly to cell j. The routing matrix
R has to adhere to the topology, i.e., if Rij > 0 then in the
multigraph G the head node of link i and the tail node of link
j must coincide. Note that, since G contains no self-loops,
this implies that Rii = 0 for all i ∈ E . Moreover, the routing
matrix is assumed to be sub-stochastic, i.e., R1 ≤ 1. This
in order to obey the conservation of mass, so that no flow
is created from the outflow from one cell. If

∑
j Rij < 1

for a cell i, it means that a fraction of the outflow, given by
1 −

∑
j Rij , will leave the network directly when flowing

out of i. We will further refer to such cells as sink cells and
denote their set as

S =
{
i ∈ E |

∑
j
Rij < 1

}
.

A routing matrix is said to be out-connected if for every cell
i ∈ E \ S there exist a sink cell j ∈ S and a positive integer
l such that (Rl)ij > 0. We denote the set of out-connected
routing matrices by R. For a subset of cells I ⊆ E , we
also say that the routing matrix is in-connected from I, if
for every cell j ∈ E \ I there exist some cell i ∈ I and a
positive integer l such that (Rl)ij > 0.

We are now ready to describe the dynamical flow network
model. We shall denote the traffic volume in and the outflow
from a cell i ∈ E by xi and zi, respectively. Let X =
RE+ and let x = (xi) and z = (zi) in X denote the
vectors of all traffic volumes and of all outflows, respectively.
Let also ϕ(x) = (ϕi(xi)) and σ(x) = (σi(xi)) be the
vectors of demand and supply functions. The dynamics of
the transportation network can then be described by the ODE

ẋ = u− (I −RT )z , (2)

where
z = f(x) , (3)

for a Lipschitz continuous function f : X → RE+ satisfying
the demand constraint

f(x) ≤ ϕ(x) , (4)

xj

zi

ϕi(xi) σi(xi)

Ci

Fig. 1. An example of a fundamental diagram with affine supply and
demand functions, as in Daganzo’s cell transmission model.

and the supply constraint

u+RT f(x) ≤ σ(x) , (5)

for every x ∈ X . We will also assume that the outflow is
equal to the demand when the supply constraints in (5) are
not active. Formally, let us define the freeflow region F ⊆ X
as

F = {x ∈ X | u+RTϕ(x) ≤ σ(x)} .

Then, we shall assume that

f(x) = ϕ(x) , x ∈ F . (6)

In summary, the results in this paper apply to models of
dynamical flow networks in the form (2)–(3) satisfying (4)–
(6). As explained in [10], this allows for several possible
dependancies of the outflow vector z on x outside the free-
flow region, i.e., when some supply constraints in (5) are
active. For example, a common way to determine the outflow
is to consider a first-in-first-out (FIFO) rule as in Example 1
below. For other models, see, e.g., [7] and [10].

Example 1 (FIFO rule): Let the outflow from a cell i be
given by

fi(x) = κi(x)ϕi(xi) , (7)

where

κi(x) =

sup

{
ξ ∈ [0, 1] | max

k∈E+i

(
ξ
∑
h∈E

Rhkϕh(xh)− σk(xk)

)
≤ 0

}
(8)

This means that if one of the immediately downstream cells
are congested, it will affect the outflow from the upstream
cell to all its immediately downstream cells.

Observe that, for all x ∈ X and i ∈ E , we have that
γi(x) ≤ 1 so that (7) guarantees that the demand constraint
(4) is satisfied. Moreover, (8) guarantees that the supply
constraint (5) is also fulfilled. Finally, observe that in the
freeflow region, i.e., for x ∈ F , we have κi(x) = 1 in (7)
for all cells i ∈ E , so that (6) is satisfied as well.

Remark 1 (Connection to Daganzo’s CTM): Let Li > 0
be the length of a cell i and let the demand and supply
functions be

ϕi(xi) =
vi
Li
xi , σi(xi) =

−wixi + xjam
i wi

Li
,



as in Fig. 1. Here, the constants vi > 0 and wi > 0 are
referred to as the free-flow speed and the shock-wave speed,
respectively. This diagram is referred to as the fundamental
diagram for traffic flows. If we discretize the dynamics with
an Euler-discretion with a step-size 0 < h ≤ Li

xi
for all i ∈ E ,

and these supply and demand functions, we obtain the cell
transmission model as was proposed by Daganzo in [1], [2].

Throughout the paper, we will assume that the routing
matrix is out-connected. Under this assumption the routing
matrix has spectral radius strictly less than 1, see e.g., [19,
Theorem 2]. This implies that the matrix I−RT is invertible,
and we will denote its inverse by

H = (I −RT )−1 . (9)

Several topological properties of the routing matrix R affect
the matrix H , a few of which are gathered in the following
result proven in Appendix A. Let an R-path be a string of
cells (i1, i2, . . . , il) ∈ E l such that ih 6= ik for all h 6= k
and Rih,ih+1

> 0 for every h = 1, 2, . . . , l − 1, and let an
R-cycle be an R-path such that the head node of il coincides
with the tail node of i1.

Lemma 1: The matrix H has the following properties:
i) For all i, Hii ≥ 1 with equality if and only if i lies in

no R-cycle.
ii) For all i 6= j, Hij ≤ Hii with equality if and only if

all R-paths from j to S pass through i.
iii) Hij > 0 if there exists an R-path from cell j to cell i.
iv) If R is acyclic, then there exists a permutation p such

that Hi,p(j) = 0 for all j > i.

If the dynamical system in (2) and (3) together with the
constraints (7)–(8) has an equilibrium, the equilibrium flows
z∗ are given by

z∗ = (I −RT )−1u = Hu .

Moreover, we introduce the set of inflow, routing matrices
and capacities, such that a freeflow equilibrium exists, the
feasibility region defined as

Λ = {(u,R,C) ∈ RE+×R×RE+ | Hu = (I−RT )−1u ≤ C} .
(10)

Let x∗ ∈ X denote the equilibrium to the dynamics.
Observe that (u,R,C) ∈ Λ does not necessary imply that
x∗ ∈ F , it will depend on the initial condition x(0).
However, for given (u,R,C) ∈ Λ , there exists a equilibrium
point x∗ ∈ F , and this equilibrium point is unique and stable,
as the following proposition states.

Proposition 1: For a given (u,R,C) ∈ Λ with strictly
increasing demand functions ϕi(xi), there exists a unique
equilibrium point in x∗ ∈ F to the dynamics given
by (2), (3), (7), and (8). Moreover, this equilibrium point
is locally asymptotically stable.

Proof: Since the demand functions are strictly increas-
ing, the traffic volumes at the flow equilibrium z∗ when the
the equilibrium is in free-flow is given by

x∗i = ϕ−1i (z∗i ) .

The local asymptotical stability follows from [10].

While other equilibria to the dynamical system (2)–(3)
together with the constraints (7)–(8) exist, the equilibrium
point x∗ ∈ F is the desired one, since it achieves the
same throughput in the network with less traffic present in
the network compared to any other equilibria. Moreover, as
shown in [20], it is most efficient to operate the transportation
network at this equilibrium point, rather than trying to steer
some time-varying trajectories. Therefore this equilibrium
will be the focus of the studies in this paper.

III. INFLOW AND CAPACITY PERTURBATIONS

In this section, we study how robust different routing
matrices are with respect to perturbations on the inflows
and on the link capacities. Specifically, we are searching
for perturbed exogenous inflow vectors ũ or perturbed flow
capacity vectors C̃ such that the transportation network does
not have a free-flow equilibrium anymore.

The capacity perturbations are occurring in the supply
or demand functions, such that the capacities given by (1)
decreases. Let the vector C̃ ∈ RE+ be the perturbed capacity
vector, and Ĉ ∈ RE+ the magnitude of the capacity drops.
Then,

C̃ = C − Ĉ ,

where it is assumed that C is such that (u,R,C) ∈ Λ. In
the same manner as the capacity perturbations, we denote
the perturbed inflow vector ũ ∈ RE+ and let û ∈ RE+ be the
perturbation. Hence the perturbed inflow vector is given by

ũ = u+ û ,

where it is assumed that (u,R,C) ∈ Λ.
For a given capacity and flow perturbation, we introduce

the cost of perturbation, γ(û, Ĉ), as

γ(û, Ĉ) =
∑
i∈E

Ψi(Ĉi) +
∑
i∈S

Φi(ûi) ,

where Ψi : R+ → R+ are strictly increasing and convex cost
functions for perturbing the flow capacities of cells i ∈ E
and Φi : R+ → R+ are strictly increasing and convex cost
functions for perturbing the exogenous inflows to cells i ∈ I.
We moreover assume that Ψi(0) = 0 for all i ∈ E , and
Φi(0) = 0 for all i ∈ I.

We say that the transportation network is robust to per-
turbations up to a given cost k, if for all Ĉ, û such that
γ(Ĉ, û) ≤ k, it holds that (ũ, R, C̃) ∈ Λ. We can then define
the network’s robustness margin as follows

Definition 1: The transportation network’s robustness
margin is given by

Γ = inf{γ(Ĉ, û) | (ũ, R, C̃) /∈ Λ} .

The definition above means that: (i) under any perturbations
with a cost less than the robustness margin Γ the perturbed
dynamics will still have a free-flow equilibrium; (ii) there
exist perturbations with a cost higher than, but arbitrarily
close to, the margin of robustness Γ such that the perturbed
dynamics do not admit a free-flow equilibrium.



Proposition 2: A transportation network’s robustness mar-
gin is given by

Γ = min
i∈E

γ̄i , (11)

where

γ̄i = min
0≤Ĉi≤Ci

û∈RI
+

Ψi(Ĉi) +
∑
j∈I

Φj(ûj)

subject to z∗i +
∑
j∈I

Hij ûj − Ci + Ĉi = 0 .

(12)

Proof: To compute the network’s robustness margin, we
have to search for the perturbation with the smallest cost,
such that inequality constraint in (10) is violated. This is
equivalent to solving the following optimization problem

min
Ĉ,û

∑
i∈E

Ψi(Ĉi) +
∑
i∈I

Φi(ûi)

subject to max
i

(Hũ− C̃)i ≥ 0 ,

û ≥ 0 , 0 ≤ Ĉ ≤ C ,
ûi = 0 , ∀i ∈ E \ I .

While the optimization problem above is not necessarily
convex, monotonicity of the cost functions Ψi and Φi implies
that an optimal solution satisfies∑

j
Hij ũj − C̃i = 0 (13)

for at least one cell i. Moreover, if (13) is satisfied by an
optimal feasible solution, then necessarily Ĉj = 0 for all
j 6= i because of monotonicity of the cost function Ψj . The
whole network’s robustness margin is then given by (11).

A. Linear Cost Functions

In the special case of linear cost functions, i.e., Ψi(Ĉi) =
αiĈi and Φi(ûi) = βiûi, where αi > 0 and βi > 0, the
problem of computing a cell’s i robustness margin in (12),
given that z∗i > 0, can be rewritten as

min
û
αi(Ci − z∗i ) +

∑
j∈I

(βj − αiHij)ûj . (14)

If βj > αiHij for all j ∈ I, then û = 0. This means
that the perturbation with the smallest cost such that a free
flow equilibrium does not exist anymore will be a capacity
perturbation. The cell’s margin of robustness is then γ̄i =
Ci − z∗i .

On the other hand, if βj < αiHij for some j ∈ I, then
the perturbation is instead an inflow perturbation such that

ûj =
Ci − z∗i
Hij

,

where
j ∈ argmin

k∈I
βk − αkHkj .

For the special case when βj = αiHij for all j ∈ S,
either a capacity reduction such that Ĉi = Ci − z∗i or a
inflow perturbation such that

ûj =
Ci − z∗i
Hij

,

λ e1

e2

e3

e4

e5

e6

Fig. 2. The network in Section III-B. Cell e1 is a source cell, so I = {e1}.
Cells e5 and e6 are sink cells, so S = {e5, e6}.

for one or several j ∈ I such that Hij > 0 will cause the
perturbed equilibrium to be outside the free-flow region.

Remark 2: If the transportation network is a line graph
where the first cell has a strictly positive inflow, it follows
from Lemma 1 that, Hij = 1 for all j ≤ i, and Hij = 0 for
all j ≥ i. Suppose that αi = ξ, for some ξ > 0, and βi = αi

for all i ∈ E . Then, given that the exogenous inflow to first
is strictly positive, the optimization problem in (14), reads

min
û
ξ(Ci − z∗i ) +

∑
j>i

ûj .

In this case it will not matter for a cell’s robustness if the
perturbation is done by a capacity reduction or an upstream
inflow perturbation.

Remark 3: Suppose that the transportation network is
acyclic, and αi ≤ βj for all j ∈ I and all i ∈ E , and
z∗i > 0 for all i ∈ E . Then the coefficients of all û in (14)
will be non-negative, due to the fact that Hij ≥ 0 as stated
in Lemma 1. This means that an optimal solution is û = 0
and a capacity perturbation can always be used to determine
the network’s robustness margin.

B. Numerical Example

In this section we give an example showing that a system
optimal traffic assignment may not be the most robust one. To
illustrate this, we consider a network with six cells depicted
in Fig. 2, where cell e1 accepts exogenous inflows, and cell
e5 and e6 are sink cells. For each of the cells, we let the
demand function be ϕi(xi) = Ci(1 − e−xi), where Ci > 0
is the cell’s capacity.

For those demand functions, as shown in [14], the corre-
sponding delay functions for given flows zi are, under the
assumption that all cells are of unit lengths,

τi(zi) =
1

zi
log

(
Ci

Ci − zi

)
.

Moreover, let B be the node-link incidence matrix to
network in Fig. 2. The system-optimal traffic assignment is
then computed by

minimize
z

∑
i

ziτi(zi)

subject to Bf = λ(1(1) − 1(5)) ,

f ≥ 0 ,

(15)

where λ is the exogenous inflow to cell e1.



We let the cells’ capacities be Ce1 = 10, Ce2 = Ce4 = 4
and Ce3 = Ce5 = Ce6 = 2. If we let λ = 2, the
solution to (15) is z∗ = (2, 1.49, 0.51, 0.35, 1.13, 0.87).
This equilibrium yields a routing matrix such that Re1,e2 =
0.74, Re1,e4 = 0.26, and Re2,e4 = 0.26, Re2,e5 = 0.74.

We let the cost functions be linear, with αi = 1 for all
cells i, and βe1 = 1. By utilizing the fact from Remark 3,
the cells’ robustness margins are given by theirs residual
capacities, so γ̄ = (8, 2.51, 1.49, 3.65, 0.87, 1.13), and the
whole network’s robustness margin is 0.87.

If, we instead let αi = 2 but βe1 = 1, i.e., in in-
flow perturbation is less costly than a capacity reduction,
then the network’s margin of robustness is given by γ̄ =
(8, 3.38, 2.98, 7.29, 1.53, 2.27). In this case, the smallest
perturbation causing the network to not have a free flow
equilibrium anymore is an increase of the inflow λ with 1.53.

Let us now compare the robustness margin values above
with a non-system optimal assignment, by letting Re1,e2 =
Re1,e3 = 0.5 and Re2,e4 = 1, i.e, half of the flow take
the upper path, half the lower path. For the first set of cost
functions, i.e., αi = 1 for all cells i, and βe1 = 1, the cell’s
margin of robustness is γ̄ = (8, 2, 1,+∞, 1, 1). Hence the
the network’s margin of robustness is 1, which is slightly
higher compared to the system optimal assignment, 0.87.

For the second set of cost functions, the cell’s robustness
margin is γ̄ = (8, 6, 2,+∞, 2, 2). In this case, the perturba-
tion is either an inflow increase of two units or a capacity
reduction at cell e3, e5, or e6 by one unit, which will have
the cost of 2. Hence, the network’s robustness margin is 2.

From the results above, we can see that there exists
traffic assignments that are more robust compared to the
system optimal one. How one should do the tradeoff between
optimality and robustness is a topic for further research.

IV. ROUTING PERTURBATIONS

In this section we consider perturbations that will affect
the turning ratios of a single cell. We denote this cell i ∈ E ,
and let r(i)j ∈ R denote the perturbation to a routing ratio,
i.e., the addition to the fraction of the flow that will go from
cell i to cell j.

Moreover, we assume that the vector r(i) is only supported
on the out-neighboring cells of cell i. The perturbed routing
matrix R̃(i) is then given by

R̃(i) = R+ 1(i)(r(i))T . (16)

The topic of interest in this section is to investigate when
the perturbed routing matrix yields a feasible perturbation,
i.e., when

(u, R̃(i), C) ∈ Λ .

Proposition 3: Let z∗ be a flow equilibrium for a given
(u,R,C) ∈ Λ. Assume that a routing matrix R is perturbed
according to (16). Then (u, R̃(i), C) ∈ Λ if and only if for
all k ∈ E it holds that∑

j HkjR̃
(i)
ij −Hki + δ

(i)
k

Ck − z∗k
≤
Hii −

∑
j HijR̃

(i)
ij

z∗i
. (17)

Proof: The Sherman-Morrison formula [21] states that
for an invertible matrix A and two column vectors v, w, the
matrix A+vwT is invertible if and only if 1+wTA−1v 6= 0
and its inverse is given by

(A+ vwT )−1 = A−1 − A−1vwTA−1

1 + wTA−1v
.

Hence,

H̃(i) = (I−(R̃(i))T )−1 = (I−(RT +r(i)
(
1(i)
)T

))−1 =

(I −RT − r(i)
(
1(i)
)T

)−1 = H +
Hr(i)

(
1(i)
)T
H

1−
(
1(i)
)T
Hr(i)

.

Since, we are interested in the new equilibrium flows

H̃(i)u = z∗ +
Hr(i)z∗i

1−
(
1(i)
)T
Hr(i)

. (18)

We now observe that

r(i) = (R̃(i))T1(i) −RT1(i) , (19)

and hence

1−
(
1(i)
)T

Hr(i) = 1− (1(i))TH((R̃(i))T −RT )1(i) =

1− (1(i))TH((R̃(i))T − (I −H−1))1(i) =

1 +Hii −
∑
j

HijR̃
(i)
ij − 1 = Hii −

∑
j

HijR̃
(i)
ij .

(20)

For the equilibrium to be in free-flow, it must hold that

H̃(i)u ≤ C .

Combining this inequality with (18), (19), and (20) yields

H(R̃(i))T1(i) −HRT1(i)

Hii −
∑

j HijR̃
(i)
ij

z∗i ≤ C − z∗ .

For a specific row k, it must then hold that∑
j HkjR̃

(i)
ij −Hki + δ

(i)
k

Ck − z∗k
≤
Hii −

∑
j HijR̃

(i)
ij

z∗i
,

which concludes the proof.

We make a few observations about eq. (17). First, observe
that the right hand side will always be non-negative since
Lemma 1 together with the fact that

∑
j R̃ij ≤ 1 gives that

Hii −
∑

j
HijR̃

(i)
ij ≥ Hii −max

j 6=i
Hij ≥ 0 .

Note however that the right hand side numerator needs to be
positive for there to be a H̃(i), as per the conditions stated
in the Sherman-Morrison formula. Moreover, the right hand
side is upper bounded by Hii/z

∗
i . In the case where z∗i is

equal to zero, the perturbed cell can not be reached by any
cell in I and as such routing perturbations on that cell have
no effect on the equilibrium. In the case(s) where Ck−z∗k is
equal to zero, it is necessary for the left hand side numerator
to be non-positive for the condition to hold.



We say that a cell i is robust to routing perturbations, if
any r(i) supported on the out-neighbouring cells of i, will
still be such that (u, R̃(i), C) ∈ Λ. From the results above,
we can state a proposition when a given cell i is robust to
all routing perturbations.

Corollary 1: A given cell i is robust to routing perturba-
tions if, for all k ∈ E ,

max
j∈E+i

{
Hkj

Ck − z∗k
+
Hij

z∗i

}
−
Hki − δ(j)k

C∗k − z∗k
− Hii

z∗i
≤ 0 ,

where E+i are the out-connected cells from cell i.

V. CONCLUSIONS

We have presented a framework for robustness analysis in
transportation networks. We do this by defining the network’s
robustness margin to inflow and capacity perturbations and
find the cost of smallest perturbation such that the network
does not have a free-flow equilibrium anymore. We also
investigate how a perturbation in the predefined routing from
a cell will affect the existence of a free-flow equilibrium. A
direction of future research is to investigate more deeply how
one can do traffic assignments that are both close to optimal
and robust, and how one should tradeoff between those two
objectives. As shown in Section III-B it is not always the
case that the optimal assignment is also the most robust one.
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APPENDIX

A. Proof of Lemma 1

To prove the claims, we will make use of the fact that
matrix H in (9) can be written as a power series,

H =
(
I −RT

)−1
= I +RT + (RT )2 + . . . . (21)

i) From the formula above it is clear that Hii ≥ 0. In
order to show the the equality part, recall that

(
Rl
)
ii

is
the aggregate weight of all length-l walks starting and
ending in cell i. Hence it will be zero for all l > 0, if
i lies in no R-cycle.

ii) To prove this part, we observe that R can be interpreted
as a random walk, where the states in i ∈ I are such that
an absorbing state is reached with probably 1−

∑
j Rij .

Then Hii, is the number of expected visits in i before
hitting the absorbing state, given that the walk starts
from i. In the same way, Hij is the number of expected
visits in i before hitting the absorbing state, given that
the walk start from j. From this interpretation, it can
be seen that Hij ≤ Hii, since every walk starting from
j and hitting i, will also be counted as a walk starting
from i. On the other hand, all walks starting from j,
will only hit i, if there is no other paths to the absorbing
state, which proves the second part of the statement.

iii) Follows from the fact that (Rl)ji is the aggregate weight
of all length-l walks from cell j to cell i.

iv) When the graph is acyclic, there exists an topological or-
dering among the nodes see, e.g., [22, Theorem 22.12].
Hence it is possible to permute the node ordering
such that R is upper triangular, and hence RT lower
triangular. Together with (21) it can be seen that if R
is upper triangular H will be lower triangular.
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