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Abstract— Both ride-hailing services and electric vehicles are
becoming increasingly popular and it is likely that charging
management of the ride-hailing vehicles will be a significant
part of the ride-hailing company’s operation in the near future.
Motivated by this, we propose a game theoretic model for charg-
ing management, where we assume that it is the fleet-operator
that wants to minimize its operational cost, which among
others include the price of charging. To avoid overcrowded
charging stations, a central authority will design pricing policies
to incentivize the vehicles to spread out among the charging
stations, in a setting where several ride-hailing companies
compete about the resources. We show that it is possible
to construct pricing policies that make the Nash-equilibrium
between the companies follow the central authority’s target
value when the desired load is feasible. Moreover, we provide
a decentralized algorithm for computation of the equilibrium
and conclude the paper with a numerical example illustrating
the results.

I. INTRODUCTION

Ride-hailing services have become more and more popular
over the past years and are nowadays an essential part of
transportation services in many cities. Also, electric vehicles
(EVs) are becoming more common and are soon likely to
become a significant part of the fleets of vehicles that ride-
hailing companies manage. Since ride-hailing companies
already offer access to cleaning and service stations to their
drivers, it is not unlikely that in the future, they will offer
discounted charging as well. By doing so, the companies
can gain control of both the coverage by sending vehicles to
charge in areas where there is demand and the availability,
e.g., by incentivizing the drivers to charge up their vehicles
before demand peaks. Moreover, given the asymmetric dis-
tribution of origins and destinations, pricing incentives can
contribute also in rebalancing vehicles in regions of higher
demand. In the case of autonomous fleets, the ride-hailing
company would have total control of the vehicles and could
also fully control the charging.

Inspired by this vision, this paper presents a pricing
mechanism to load balance the ride-hailing vehicles among
different charging stations. We study a scenario where a
central body, e.g., the government of the city or the power
providing company, defines the set points describing how
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Fig. 1. Schematic sketch of the problem setting. The central body, e.g.,
the government or the power company, wants to balance the vehicle load
on different charging stations through pricing policies. With the provided
pricing policies, each ride-hailing company wants to minimize its own
operational cost by steering its vehicles to different charging stations.

the vehicles should spread out among the charging facilities
in an attempt to either help fight the congestion in the city
or to balance the demand on the power grid. The central
body is incentivizing the ride-hailing companies to follow
the desired set points through pricing while each company is
trying to optimize its operational cost by directing its vehicles
to different charging stations. A schematic representation of
the problem is shown in Figure 1. Due to every company’s
interest in minimizing its queuing time at the stations, there
is an inherent competition among them establishing fertile
ground for game theoretic analysis.

Research has shown that the frameworks of congestion,
mean-field, Stackelberg, and inverse Stackelberg games are
powerful tools for solving problems within the realm of
transportation and mobility systems. In [1], [2], through
congestion game based routing, tolling mechanisms have
been designed for congestion control of urban networks,
whereas in [3], charging station allocation for a population
of EVs has been performed. The structure of the mean-
field games, where the utility of each player depends on
the aggregation of other players’ decisions, offers a suitable
setting for charging control of a population of EVs as
presented in [4]–[7]. Our work is similar to [4]–[7] in a
sense that the underlying structure of our problem can also
be described by an aggregative game. However, we also
go along the line of research that focuses on Stackelberg
and inverse Stackelberg games to design pricing and tolling
mechanisms primarily for revenue maximization. In [8], [9],
the charging stations act as revenue maximizing leaders in
a Stackelberg game, whereas individual EVs act as charging
cost minimizing followers. The setup in [8], [9] assumes
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fixed optimal prices of charging. In this paper, we propose
using a pricing mechanism based on the decision of the ride-
hailing companies which allows us to directly influence the
placement of the Nash equilibrium. This makes our setup
more similar to the ones presented in [10], [11] where inverse
Stackelberg game has been used to solve hierarchical control
and bi-level optimal toll design problems. The inverse Stack-
elberg pricing schemes are different from the Stackelberg
ones in a sense that the prices are not a priori set to a
certain value by the leading player, i.e., the central body,
but are rather announced as a function of the followers’
decisions. This means that the companies do not know what
the charging prices will be before they make a decision on
how to direct their vehicles but rather how their joint decision
will influence the prices of charging.

To the best of our knowledge, no work so far has provided
a comprehensive framework for analysing the problem of
balancing the charging of EV fleets operated by ride-hailing
companies so as to achieve the objective of a higher level au-
thority. Moreover, we do so in a decentralized manner, with
little private information exchange between the ride-hailing
companies and the government and under the reachability
constraints imposed by the state of the individual car fleets.

The paper is outlined as follows: the rest of this section
is devoted to introducing some basic notation. In Section II
we introduce the model and state the main formulation. In
the following section, Section III, we present the pricing
mechanism and show that this pricing mechanism achieves
a unique Nash-equilibrium between the companies. We also
provide an algorithm to compute the Nash-equilibrium. In
Section IV, we illustrate the proposed solution through a
numerical example and conclude the paper with some ideas
for future research in Section V.

A. Notation

Let R denote the set of real numbers, and R+ the set of
non-negative reals. Let 0m and 1m denote the all zero and
all one vectors of length m respectively, and Im the identity
matrix of size m×m. For a finite set A, we let RA(+) denote
the set of (non-negative) vectors indexed by the elements of
A, |A| the cardinality of A and we let PA be the probability
space over the set, i.e., PA := {x ∈ RA+ |

∑
i∈A xi = 1}.

For a diagonal matrix A ∈ Rn×n, we let A∗ denote its
pseudo-inverse, i.e.,

A∗ii :=

{
1/Aii if Aii 6= 0,

0 otherwise,
1 ≤ i ≤ n .

II. MODEL

We consider a setting where different ride-hailing com-
panies have access to common charging stations for their
electric vehicles. We let C denote the set of companies, and
Ni > 0 the number of vehicles belonging to each company
i ∈ C. The vector of the number of vehicles for all companies
is denoted by N ∈ RC+. We let M represent the set of
charging stations, and Mj > 0 the number of spots available
at each charging station j ∈ M, i.e., the charging station’s

capacity. The vector of all charging stations capacities is
denoted by M ∈ RM+ and the cardinality ofM as m = |M|.

For each company i ∈ C, we let Vi be the set of its vehicles
with |Vi| = Ni and xi ∈ PM denote the fraction of vehicles
that the company wants to send to each charging station,
i.e., xij is the fraction of vehicles from company i ∈ C that
will be sent to charging station j ∈ M. Furthermore, let
nij ∈ Z+ denote the integer number of vehicles, associated
with the continuous allocation xij , that the operator of the
fleet would send to station j. Since not all charging stations
are reachable for all vehicles and hence not all choices of xi

are feasible, we define for each company the feasibility sets
F i

j := {v ∈ Vi | v can reach station j}.
We say that a continuous allocation vector xi is feasible, if

it allows the operator of the company to choose any discrete
allocation ni ∈ ZM+ where individual nij can be either⌊
Nix

i
j

⌋
or
⌈
Nix

i
j

⌉
under the constraints that

∑
j∈M nij =

Ni and that there exists a feasible matching between the
vehicles and the charging stations for the chosen ni. For
each company i ∈ C, we let Ki ⊆ PM denote the set of
all feasible xi. Furthermore, we define K :=

∏
i∈C Ki and

K−i :=
∏

j∈C\iKj .
We let x :=

[
xi
]
i∈C ∈ K denote all companies’ decision

vectors, x−i :=
[
xj
]
j∈C\i ∈ K−i denote the decision

vectors of all companies except the company i, σ (x) :=∑
i∈C Nix

i ∈ RM+ denote the vector consisting of the
total number of vehicles that have chosen each station and
σ
(
x−i
)

:=
∑

j∈C\iNjx
j ∈ RM+ denote the vector consist-

ing of the number of vehicles from the other companies that
have chosen each station.

To easily distinguish between the agents, we refer to
the central authority as the “government”. It is interested
in balancing the vehicles so as to minimize the personal
objective of the form

JG(σ (x)) =
1

2
σ (x)

T
AGσ (x) + bTGσ (x) , (1)

for some diagonal matrix AG � 0 and bG ∈ RM. In this
paper, we are particularly interested in balancing the vehicles
so that the number of vehicles charging at each station equals
N̂ , i.e., to minimize

JG(σ (x)) =
1

2
‖σ(x)− N̂‖22,AG

, (2)

where AG gives the government the possibility to penalize
deviations from the desired number of vehicles differently at
different stations. It should be noted that (2) is a special case
of (1) that can be obtained by letting in bG = −AGN̂ ∈ RM.

To steer the companies to the minimum of (2), the
government will assign an individual pricing policy to each
company for each charging station. The policy will be a
function of the choice of the company itself but also of the
other companies’ choices, since the government’s interest is
to control the total number of vehicles. For company i ∈ C,
the pricing policy is pi

(
xi, x−i

)
: Ki ×K−i → RM.

After the pricing policies are announced, the government
and the companies admit an inverse Stackelberg game in



which every company is trying to minimize its own op-
erational cost, under the constraint that all the company’s
vehicles must be able to reach a charging station. We model
the operational cost for each company as a sum of three
terms. The first term, denoted as the queuing cost, depends
on the choice of the company itself but also on the cumulative
choice of all other companies and has the general form

J i
1

(
xi, σ(x)

)
=

1

2
(xi)TAix

i+(xi)TBiσ
(
x−i
)
+cTi x

i , (3)

for some diagonal matrices Ai ∈ RM×M, Bi ∈ RM×M and
ci ∈ RM. In this paper, we model the expected queuing cost
as J i

1

(
xi, σ(x)

)
= Ni

(
xi
)T
Q (σ(x)−M) , which is a spe-

cial case of (3) if we set Ai := 2N2
i Q, Bi := NiQ and ci :=

−NiQM . Here, Q ∈ RM×M is a positive definite diagonal
scaling matrix whose diagonal entries describe how expan-
sive it is to queue in the regions around charging stations.
Generally, more congested areas should experience higher
queuing costs and hence higher scaling factors. We model the
second term which describes the charging cost as a function
of the choice of the company and the pricing policy assigned
to it, i.e., J i

2

(
xi, pi

(
xi, x−i

))
= (xi)TDipi

(
xi, x−i

)
, for

some diagonal Di � 0. The diagonal entry (Di)kk can
be interpreted as the part of the total charging demand to
be served at the charging station k. The third term we
denote as the negative expected revenue and model it as
a function of only the company’s choices, i.e., J i

3

(
xi
)

=
fTi x

i. Here, we interpret the negative expected revenue as
the difference between the cost of fleet being idle while
traveling to the charging stations and the expected profit in
the regions around charging stations after the charging has
been completed. The information about the negative expected
revenue per vehicle is encoded in fi. Hence, the company
cost can be in general expressed as

J i
(
xi, x−i

)
= J i

1

(
xi, σ(x)

)
+J i

2

(
xi, pi

(
xi, x−i

))
+J i

3

(
xi
)

(4)
and each company i ∈ C would like to allocate its vehicles
according to

xi∗ ∈ arg min
xi∈Ki

J i
(
xi, x−i

)
. (5)

We say that the government and the companies admit a
system optimum if there exists x∗ that minimizes (1) and
satisfies (5) for all i ∈ C. We will show in the following
section that if we can reduce the decision space of the
companies to convex subsets Ki ⊆ Ki, under the proposed
pricing strategies there will be a unique system optimum.

To summarize, we consider the problem of designing
prices, such that each company will steer its fleet of vehicles
towards predefined target values of vehicle accumulations
around different charging stations. A schematic sketch of the
problem is shown in Figure 1 and the problem is formally
stated below.

Problem 1: Design pricing policies pi
(
xi, x−i

)
and the

constraint sets Ki ⊆ Ki such that there is a unique Nash

equilibrium of the game G defined as

G :=

{
min
xi∈Ki

J i
(
xi, x−i

)
,∀i ∈ C

}
, (6)

with J i defined as in (4). Moreover, the Nash equilibrium
should be such that it also minimizes the government cost
JG(x) in (1) and the design of the constraint sets Ki such
that existence of a feasible discrete allocation scheme for
each company is guaranteed.

III. PRICING MECHANISM

We begin this section by showing how the sets Ki can
be constructed. With the existence of those sets, we then
proceed to introduce a pricing policy that achieves a unique
Nash equilibrium for allocating the vehicles of all compa-
nies. Moreover, we show that this Nash equilibrium also
minimizes the government’s cost function which makes it
a unique system optimum. In the last part of the section, we
propose an algorithm for computing the Nash equilibrium.

In the following proposition, we show how to analytically
construct convex sets Ki ⊆ Ki based on feasibility sets F i

j ,
that guarantee feasibility of xi defined as in Section II.

Proposition 1: For each company i ∈ C, define the set
Ki ⊆ Ki ⊆ PM such that xi ∈ Ki if for all proper subsets
S of M, it holds that

Ni

∑
j∈S

xij ≤ max

0,

∣∣∣∣∣∣
⋃
j∈S
F i

j

∣∣∣∣∣∣− |S|
 . (7)

If the state of the car fleet does not correspond to a degenerate
case for which Ki = ∅, then every xi ∈ Ki is feasible and
Ki is compact and convex.

The proof of Proposition 1 is given in the extended version
of our paper.

Remark 1: For every subset S of M, a constraint on the
discrete allocation vector ni given by

∑
j∈S

nij ≤

∣∣∣∣∣∣
⋃
j∈S
F i

j

∣∣∣∣∣∣ , (8)

must be fulfilled so that every vehicle is matched with exactly
one charging station. Intuitively, inequality (8) states that for
any subset of the charging stations, the operator of the com-
pany must not allocate more vehicles than what is feasible.
In fact, the constraint on the continuous allocation vector xi

given by (7) is a tightened version of the constraint (8) that
guarantees the condition (8) will be fulfilled regardless of
how the operator chooses ni based on xi. Degenerate states
of the car fleet that result in Ki = ∅ correspond to cases
where most of the vehicles have very limited options when
choosing the station to charge and as such are not the subject
of our interest.

Let K :=
∏

i∈C Ki and K−i :=
∏

j∈C\iKj . We will now
introduce our pricing mechanism.



Definition 1 (System Optimal Pricing Policies): For each
company i ∈ C, let

pi
(
xi, x−i

)
= D∗i

[
1

2
Aix

i + Biσ
(
x−i
)

+ ∆i

]
. (9)

where Ai = N2
i AG − Ai , Bi = NiAG − Bi and ∆i =

NibG − ci − fi.
Remark 2: For a company i ∈ C, unreachable stations will

correspond to zero diagonal entries in the matrix Di, which
makes the matrix not invertible. However, since company i
will not use those charging stations, letting the prices for
those stations be zero through the pseudo-inverse will not
affect the solution of the problem.

We will later in this section show that these pricing polices
minimize the government’s objective, which explains why we
refer to the pricing policies as system optimal.

Next, we will show that the proposed pricing policies will
give raise to a unique Nash equilibrium in the game between
the companies.

Theorem 1: For all companies i ∈ C, let the sets Ki be
designed as in Proposition 1. Then, with the system optimal
pricing policies in Definition 1, the game G in (6) has a
unique Nash equilibrium.
Proof To prove existence and uniqueness of the Nash
equilibrium, we rely on techniques from [12]. Inserting
policy (9) into (4), and utilizing that for xi ∈ Ki it
holds that DiD

∗
i x

i = xi, transforms the cost of each
company i ∈ C into J i(xi, x−i) = 1

2

(
xi
)T
N2

i AGx
i +(

xi
)T
Ni

(
AGσ

(
x−i
)

+ bG
)
. Since the action spaces Ki

are compact (as a subset of the probability space over
M), convex and satisfy Slater’s constraint qualification by
construction, J i(x) are continuous in x ∈ K, J i(xi, x−i) are
convex in xi ∈ Ki for a fixed x−i ∈ K−i and players perform
minimization of the objective, [12, T.1] guarantees existence
of a Nash equilibrium. According to [12, T.2], a sufficient
condition for the Nash equilibrium to be unique is that the
symmetric matrix Γ := G(x, r) +GT (x, r) be negative defi-
nite for x ∈ K and some r = [ri]i∈C ∈ RC>0 with G(x, r) be-
ing the Jacobian with respect to x of function g(x, r) defined
as g(x, r) :=

[
−ri∇xiJ

i(x)
]
i∈C . For r = 1|C| and any x ∈

K we have xT Γx = −2
(∑

i∈C Nix
i
)T
AG

(∑
i∈C Nix

i
)
.

Since Ki ⊆ PM for all i ∈ C, we have
∑

i∈C Nix
i 6=

0|M|. Since AG � 0, we have xT Γx < 0 for all x ∈ K
which proves that Γ is negative definite on K and that the
Nash equilibrium is unique.

Now that we know that under the pricing policies given
by (9) the Nash equilibrium is unique, we proceed to show
that it also minimizes the government objective (1).

Theorem 2: For all companies i ∈ C, let the sets Ki be
designed as in Proposition 1. Then, with the system optimal
pricing policies in Definition 1, the Nash equilibrium x∗ of
game G satisfies

x∗ ∈ arg min
x∈K

JG (σ(x)) .

Proof Let AT :=
[
NiI|M|

]
i∈C ∈ R|M||C|×|M|, then the

government optimization problem is equivalent to

min
x∈K

JG(x) :=
1

2
xTATAGAx+ bTGAx . (10)

The function JG(x) is convex since ∇2
xJG(x) = ATAGA

and for all xi ∈ Ki ⊆ PM it holds that
∑

i∈C Nix
i 6= 0|M|

so xTATAGAx =
(∑

i∈C Nix
i
)T
AG

(∑
i∈C Nix

i
)
> 0

which guarantees that ∇2
xJG(x) � 0. According to [13,

4.21], x∗ is the minimizer of (10) on K if and only if
〈∇xJG(x) |x=x∗ , y − x∗〉 ≥ 0, ∀y ∈ K. Under the pricing
policies defined in (9), JG(x) is the exact potential [14] for
game G satisfying for all i ∈ C and any fixed x−i ∈ K−i
∇xiJ i

(
xi, x−i

)
= ∇xiJG

(
xi, x−i

)
, ∀xi ∈ Ki . (11)

If x̂ is the Nash equilibrium of G, then for all i ∈ C we have
x̂i ∈ arg minxi∈Ki

J i
(
xi, x̂−i

)
. According to [13], we can

now write
〈
∇xiJ i(x) |x=x̂, y

i − x̂i
〉
≥ 0, for all yi ∈ Ki

for all i ∈ C. Because of (11), for all i ∈ C and for all
yi ∈ Ki it holds that

∑
i∈C
〈
∇xiJG(x) |x=x̂, y

i − x̂i
〉
≥ 0 .

Finally, we have that x̂ indeed is the minimizer of (10) since∑
i∈C
〈
∇xiJG(x) |x=x̂, y

i − x̂i
〉

= 〈∇xJG(x) |x=x̂, y − x̂〉
is true for any y ∈ K.

Sets Ki defined as (7) reflect the current state of the car
fleets. In realistic scenarios, these sets are private, i.e., not
known to the government, as they encompass information
about the current true location of the vehicles and their
current and desired battery status, preventing centralized
computation of the Nash equilibrium. Hence, a decentralized
algorithm with minimal exchange of information between
the agents is required. Such algorithms based on theory
of aggregative games were proposed in [4], [5] and [15].
Based on [15], since our game-map, defined as F (x) =[
∇xiJ i

(
xi, x−i

)]
i∈C , is equal to

F (x) = ATAGA︸ ︷︷ ︸
F1

x+AT bG︸ ︷︷ ︸
F2

(12)

and is a non-strictly monotonic (F1 � 0) linear operator, we
utilize a distributed iterative scheme based on the Krasnosel-
skij iteration [16] to find the Nash equilibrium of G.

Proposition 2: Under the system optimal pricing policies
and for sets Ki as in Proposition 1, for every γ such that

0 < γ <
2

λmax (F1)
, (13)

a distributed iterative scheme given by

xi(k + 1) =
1

2

(
xi(k) + ΠKi

[
xi(k)− γ∇xiJ i

(
xi, x−i

)])
,

where ΠKi
denotes the projection operator onto Ki, con-

verges to the Nash equilibrium of the game G.
Proof A point x̂ ∈ K is a Nash equilibrium of game
G with game map F (x) defined by (12) if and only
if F (x̂)

T
(y − x̂) ≥ 0 for all y ∈ K [17]. One can

prove that F (x̂)
T

(y − x̂) ≥ 0 holds for all y ∈ K if
and only if x̂ = ΠK [x̂− γF (x̂)]. Indeed, based on [13]
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Fig. 2. Shows the location of charging station 1 (M1), station 2 (M2),
station 3 (M3) and station 4 (M4). Moreover, black triangles, squares and
pentagons show the locations of vehicles that belong to company 1 (C1),
company 2 (C2) and company 3 (C3) respectively.

and the fact that z = ΠK [x̂− γF (x̂)] is equivalent to
z being the minimizer of ‖z − (x̂− γF (x̂))‖22 over K,
we have that z = ΠK [x̂− γF (x̂)] is equivavlent to
2 (z − (x̂− γF (x̂)))

T
(y − z) ≥ 0, for all y ∈ K, which

by setting z = x̂ completes the proof of equivalence. Now
we have that x̂ is a Nash equilibrium if and only if it is
a fixed point of H(x) = ΠK [x− γF (x)]. Because K is
compact and convex, for any γ such that H(x) is non-
expansive and x(0) ∈ K, the iterative procedure x(k+ 1) =
0.5 (x(k) +H (x(k))) converges to the fixed point of H(x)
(the unique Nash equilibrium of G) according to [16]. Since
the projection operator is non-expansive, for γ such that
H̄(x) = Ix− γF (x) = (I− γF1)x− γF2 is non-expansive,
the map H(x) will be non-expansive too. H̄(x) is an affine
map so it is non-expansive if ‖I− γF1‖2 ≤ 1. Since F1 is
symmetric this is equivalent to maxi |λi (I− γF1)| ≤ 1. For
γ given in (13) and because F1 � 0 this is guaranteed since
−1 ≤ 1− γλi (F1) ≤ 1 is true for all i.

IV. NUMERICAL EXAMPLE

We illustrate in this section how the proposed method
can be utilized to balance the EVs so that the number of
them charging at different stations is as close as possible
to vector N̂ . We consider a scenario where 3 ride-hailing
companies C = {C1, C2, C3}, whose fleet sizes are given
by N = [60, 35, 45]

T , operate in a square region with
4 charging stations M = {M1,M2,M3,M4}. The sta-
tions are described by the vector of their capacities M =
[20, 10, 15, 10]

T and we set desired vehicle numbers around
them to be N̂ = [35, 15, 50, 40]

T .
Each vehicle vj ∈ Vi is described by a tuple(
xj , yj , s

start
j , sdes

j , dmax
j

)
where (xj , yj) ∈ R2 describes the

position of the vehicle, dmax
j is the max range of the vehicle

and sstart
j , sdes

j represent the current and desired battery levels.
The vehicles and charging stations are placed randomly
with: sstart ∼ U [20, 40], sdes ∼ U [80, 100] and dmax ∼
U [150, 200]. The scenario is depicted in Figure 2. A station
is considered to be feasible to a vehicle if the vehicle can
reach it with the current battery status. For simplicity, if we
assume a linear battery discharge model, a charging station
k is feasible for vehicle j if sstart

j − 100
dmax
j
dj,k > 0 where

TABLE I
COMPANY DECISIONS AND CHARGING PRICES

C Station 1 Station 2 Station 3 Station 4
xi1 pi xi2 pi xi3 pi xi4 pi

C1 0.20 1.65 0.15 3.78 0.38 1.16 0.27 0.98
C2 0.19 1.75 0.16 4.12 0.41 1.48 0.24 1.17
C3 0.21 1.77 0.10 4.16 0.43 1.29 0.26 1.04

dj,k denotes the distance between the vehicle j and the
charging station k and sstart

j is expressed in percentage. The
average charging cost is modelled as J i

2

(
xi, pi

(
xi, x−i

))
=

Ni

(
xi
)T
Ripi

(
xi, x−i

)
. Diagonal matrix Ri ∈ R4×4 cap-

tures the average charging demand per vehicle when choos-
ing each of the charging stations. For infeasible charging
stations the average demand is set to 0. Pricing policy pi
denotes the price of one unit of charge at each station.
If the charging station k is feasible to vehicle vl ∈ Vi,
vehicle’s charging demand if k is chosen for charging is
defined as δl,k = βl

(
sdes
l −

(
sstart
l − 100

dmax
l
dlk

))
. Here βl ∈ R

is a scaling coefficient that says how many units of charge
corresponds to 1% of the vehicle’s battery. The diagonal
element of Ri that corresponds to station k is then given

by (Ri)kk =

[
1

|Fi
k|
∑

l:vl∈Fi
k
δl,k

]
. We model the negative

expected revenue as J i
3

(
xi
)

= (earr
i )

T
Nix

i −
(
epro
i

)T
Nix

i.
Here, earr

i ∈ R4 is the average cost of a vehicle being
unoccupied while traveling to a charging station. If station
k is infeasible, then we set (earr

i )k = 0, otherwise it is equal

to (earr
i )k = ui · Pk ·

[
1

|Fi
k|
∑

l:vl∈Fi
k
dl,k

]
, where ui ∈ R

is the monetary value of a vehicle being occupied while
driving for 1km, given in [$/km] and Pk is the probability
of a vehicle being occupied in the region around charging
station k. The vector epro

i ∈ R4 denotes expected profit in
regions around different charging stations. In general, this
vector is obtained from historical data and here we choose
it randomly such that each element of epro satisfies epro

j ∼
U [100, 350]. The sample drawn in this simulation is epro =
[202.51, 301.02, 252.34, 195.61]T . We fix other parameters
to βl = 1.0, Q = diag(1, 5, 3, 2) and AG = 2Q, vector of
probabilities of being occupied P = [0.15, 0.4, 0.2, 0.1] for
all k ∈ M, ui = 1.0 for all i ∈ C, and set the number of
iterations for the algorithm to k = 3000. For this case study,
the optimal pricing policy in accordance with (9) is obtained
by setting Di := NiRi and fi := Ni (earr − epro).

In the Nash equilibrium, car fleet portions to be directed
to each of the charging stations and the resulting charging
prices are presented in Table I whereas the evolution of the
government loss JG and the total number of vehicles over the
iterations is presented in Figure 3. From the plot it is clear
that the iterative procedure converged to a Nash equilibrium
that is the government optimum but does not perfectly match
the predefined vehicle accumulation vector N̂ due to vehicle
arrangement and their battery status. As expected, the prices
of charging at station 2 are significantly higher than for
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Fig. 4. When the government does not have correct information about the
vehicles’ locations and what their charging demands are, the pricing policies
divert from the optimal ones. For each α, the mean value of JG is plotted
over 100 simulations, together with its maximum and minimum value.

any other charging station for all the companies as it has
the smallest desired vehicle accumulation and is the most
desirable in terms of expected profit and the distance to be
travelled to reach it. Station 4 is the least attractive hence, it
has the smallest charging prices in the Nash equilibrium.

Apart from Ri and earr, all other parameters are inherently
known to the government as they characterize the region
in which the companies operate. Hence, the government
optimum is attainable if the companies are willing to share
Ri and earr that encompass the information about the average
state of the company’s fleet. We test robustness of the
proposed pricing policies and show how the system behaves
in the same scenario when the government has only an
estimate Ri of the average charging demand Ri. For a
feasible station k, we let

(
Ri

)
kk

= (Ri)kk + wk where wk

is a noise sample such that wk ∼ N
(

0, (αRmin/5)
2
)

with
Rmin being the minimal, non-zero, diagonal element of Ri.
For every α we sample wk one hundred times and report the
mean value of the government’s loss in the Nash equilibrium.
Figure 4 shows that for moderate discrepancies (α < 0.6)
between the true and the estimated value of Ri, the attained
Nash equilibrium is close to the government’s optimum. It
also confirms that the worse the approximation is, the higher
the deviation of the Nash equilibrium from N̂ will be.

V. CONCLUSIONS

In this paper we have developed a model for charge
pricing of fleets of electric ride-hailing vehicles, where a
central authority wants to control the demand on the charging
stations through pricing. We constructed a set of pricing
policies, and showed that those policies both give rise to
a unique Nash equilibrium when each fleet operator wants
to minimize its own operational cost and that this Nash
equilibrium also minimizes the deviation from the central
authority’s desire.

In the future, we plan to deeper address the robustness
of the proposed solution, something that is needed when
the government does not have full knowledge of vehicles’
position and charging demands.
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