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A Micro-Simulation Study of the Generalized
Proportional Allocation Traffic Signal Control

Gustav Nilsson and Giacomo Como

Abstract—We study the problem of controlling phase ac-
tivations for signalized junctions in an urban transportation
network using local feedback information consisting of measures
of the queue-lengths at the incoming lanes of each junction.
Our focus is on the validation and performance evaluation
through micro-simulations of the recently proposed Generalized
Proportional Allocation (GPA) controller. Previous theoretical
work has provided provable performance guarantees in terms of
stability, and throughput optimality of the GPA controller in a
continuous averaged dynamical queueing network model. In this
paper, we first provide and implement two discretized versions
of the GPA controller in the SUMO micro simulator. We then
compare, in an artificial Manhattan-like grid, the performance
of the GPA controller with those of the MaxPressure controller,
which is another distributed feedback controller that requires
more information than the GPA. Finally, to show that the GPA
controller is easily implementable in a real-world scenario, we
apply it to a previously published realistic traffic scenario for
the city of Luxembourg and compare its performance with the
static controller provided with the scenario as well as with
the cyclic MaxPressure controller. The simulations show that
the GPA controller outperforms both the fixed time and the
cyclic MaxPressure controllers for the Luxembourg scenario, and
behaves better than the MaxPressure pressure controller in the
Manhattan-grid when the demands are low.

Index terms: Decentralized Traffic Signal Control, Micro-
scopic Traffic Simulation

I. INTRODUCTION

While the first traffic signals were controlled completely in
open loop, various approaches have been taken to adjust the
green light allocation based on the current traffic situation.
The problem of traffic signal control for a single junction
has been well studied in, e.g., [1]. Although traffic signal
control for a whole transportation network is more complex,
several approaches have been undertaken. To mention a few,
SCOOT [2], UTOPIA [3], and SCATS [4] all focus on
controlling traffic signals in a whole transportation network.
Other control theoretic approaches to traffic signal are, e.g.,
learning-based methods [5], [6], [7], hybrid control [8], and
fuzzy control [9]. For a review of traffic control, see [10].

However, these approaches generally lack formal stability,
optimality, and robustness guarantees. In [11], [12], a decen-
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tralized feedback controller for traffic control was proposed,
referred to as Generalized Proportional Allocation (GPA), for
which both stability and throughput optimality guarantees can
be proved in a dynamical queueing network model. These
promising theoretical results motivate the investigation of
whether the GPA control performance can be validated in a
micro-simulator with more realistic traffic dynamics, which is
the subject of the present paper.

More specifically, in [11], [12], a GPA average control
action for traffic signals in continuous time is studied. Under
the assumptions that the controller can measure the whole
queue lengths at each junction, the averaged controller is
shown to be throughput-optimal from a theoretical perspective.
With this, we mean that when the traffic dynamics is modeled
as a network of point queues there exists no controller that can
handle larger constant exogenous inflows to the network than
the GPA controller. That throughput can be optimized by fully
decentralized control policies using no global information on
the network is in line with similar results in resilient control
of dynamical flow networks [13], [14]. The throughput opti-
mality property also implies that there are formal guarantees
that the controller will not create gridlock situations in the
network. Note that, as exemplified in [15], in general, feedback
controllers performing well for a single isolated junction may
cause gridlocks in a network setting.

At the same time, the GPA controller requires very lit-
tle information about the network topology and traffic flow
propagation. Indeed, all information the GPA controller needs
to determine the phase activation in a junction is the queue
lengths on the incoming lanes to that junction and the static
set of phases. This makes the controller fully distributed, as
no information is required on the global network structure or
about the state in the other junctions in order to compute the
control action in one junction. The GPA traffic signal controller
also has the property that it adjusts the cycle lengths depending
on the demand, extending it when the demand is higher and
reducing it when it is lower. The fact that during higher
demands, the cycle lengths should be longer to waste less
service time due to phase shifts, has been suggested previously
for open-loop traffic signal control, see e.g., [16].

Another feedback control strategy for traffic signal control is
the MaxPressure controller [17], [15] that builds upon the same
idea as the BackPressure controller, proposed for communi-
cation networks in [18]. While the BackPressure controller
controls both the routing (to which servers the packets should
proceed after received service) and the scheduling (which
subset of queues that should be severed), the MaxPressure
controller only controls the latter, i.e., the phase activation but
not the routing. More recently, due to the rapid development
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of autonomous vehicles, it has been proposed in [19] to utilize
the routing control from the BackPressure controller in traffic
networks as well. Like the GPA controller, the MaxPressure
controller can also be proved to be throughput optimal. How-
ever, the MaxPressure controller requires information about
the tuning ratios at each junction, i.e., how the vehicles (on
average) propagate from one junction to the neighboring junc-
tions. Although various techniques for estimating those turning
ratios have been made, for example [20], with more and
more drivers or autonomous vehicles doing their path planning
through some routing service, it is likely to believe that the
turning ratios can change in an unpredictable way when a
disturbance such as an accident occurs in the transportation
network. If the traffic signal controller has information about
the turning ratios, other control strategies are possible as well,
for instance, MPC-like as proposed in [21], [22], [23] and
robust control as proposed in [24].

In a conference contribution [25] we presented the first
discretization and validation results of the GPA in a micro-
scopic traffic simulator. Although these preliminary results
were promising, the validations were only performed on an
artificial network and only compared with a fixed-time traffic
signal controller. Moreover, the GPA was only discretized in a
way such that all phases in a cycle are activated. In this paper,
we substantially extend such preliminary results in [25] by
showing another discretization that does not have to utilize
the full cycle, and we also perform new validations. The
new validations both compare the GPA to the MaxPressure
controller on an artificial network (the reason for choosing an
artificial network will be explained later), but also validate
the GPA controller in a realistic scenario, namely for the
Luxembourg city during a whole day. Since both the GPA
and the MaxPressure are decentralized and throughput optimal,
by comparing them side-to-side, we can investigate whether
the additional information about the turning ratios that the
MaxPressure controller requires yields any performance gain,
and if this dependence on external information makes the
MaxPressure less robust as compared to the GPA.

The outline of the paper is as follows: In Section II we
present the model we are using for traffic signals, together with
a problem formulation of the traffic signal control problem. In
Section III we present two different discretizations of the GPA
that we are using in this study and give brief descriptions
of the MaxPressure controller and the Cyclic MaxPressure
controller. In Section IV we compare the GPA controller
with the MaxPressure controller on an artificial Manhattan-
like grid, and in Section V we investigate how the GPA
controller performs in a realistic traffic scenario, where it is
also compared to the Cyclic MaxPressure controller. The paper
is concluded with some ideas about further research.

II. MODEL AND PROBLEM FORMULATION

In this section, we describe the model for traffic signals that
will be used throughout the paper, together with the associated
control problem.

We consider an arterial traffic network with signalized
junctions. Let J denote the set of such signalized junctions.

For a junction j ∈ J , we let L(j) be the set of incoming lanes,
on which the vehicles can queue up. The set of all lanes in
the whole network will be denoted by L =

⋃
j∈J L(j). For

a lane l ∈ L, the queue-length at time t —measured in the
number of vehicles— is denoted by xl(t).

Each junction has a predefined set of phases P(j) of size nj .
For simplicity, we assume that phases pi ∈ P(j) are indexed by
i = 1, . . . , nj . A phase p ∈ P(j) is a subset of incoming lanes
to the junction j that can receive green light simultaneously.
Throughout the paper, we will assume that for each lane l ∈ L,
there exists a unique junction j ∈ J with at least one phase
p ∈ P(j) such that l ∈ p.

The phases are usually constructed such that the vehicles’
paths in a junction do not cross each other, in order to avoid
collisions. Examples of this will be shown later in the paper.
After a phase has been activated, it is common to signalize to
the drivers that the traffic signal is turning red and give time for
vehicles that are in the middle of the junction to leave it before
the next phase are activated. Such time is usually referred to as
clearance time. Throughout the paper, we shall refer to those
phases containing yellow traffic signals as clearance phases
(in contrast to regular phases corresponding to configurations
when lanes receive green traffic light). We will assume that a
clearance phase activation follows each phase activation. We
will let the phase activation time vary and make the natural
assumption that the clearance phases has to be activated for a
fixed time.

For a given junction j ∈ J , the set of phases can be
described through a phase matrix P (j) of dimension |L(j)| ×
|P(j)|, where

P
(j)
il =

{
1 if lane l belongs to the i-th phase
0 if otherwise .

While neither the phase matrix nor the corresponding set
of phases P(j) contain the clearance phases, to each phase
p ∈ P(j) we will associate a clearance phase, denoted p′. We
denote the set of real phases and their corresponding clearance
phases by P̄(j).

The controller’s task in a signalized junction is to define a
signal program, T (j) = {(p, tend) ∈ P̄(j) × R+}, where the
phase p is activated until tend. When t = tend, the phase p′,
where (p′, t′end) ∈ T (j), with smallest t′end > t is activated.
Formally, we can define the function c(j)(t) that gives the
phase that is activated at time t as follows

c(j)(t) = {p : (p, tend) ∈ T (j) |
tend > t and tend ≤ t′end for all (p′, t′end) ∈ T (j)} .

What c(j)(t) is doing is to find the phase with the smallest
end-time greater than the current time.

Finally, we let

T (j) = max{tend | (p, tend) ∈ P(j)}

denote the time when the signal program for junction j ends,
and hence a new signal timing program has to be determined.

Example 1: Consider the junction in Figure 1 with the
incoming lanes numbered as in the figure. In this case, the
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Fig. 1. The phases for the junction in Example 1. This junction has four
incoming lanes and two phases, p1 = {l1, l3} and p2 = {l2, l4}. Hence
there is no specific lane left-turning left.

t
0 25 30 55 60

c(t) p1 p′1 p2 p′2

Fig. 2. Example of a signal program for the junction in Example 1. In this
example the signal program is T = {(p1, 25), (p′1, 30), (p2, 55), (p′2, 60)}.

drivers turning left have to solve collision avoidance by
themselves. The phase matrix is

P (j) =

[
1 0 1 0
0 1 0 1

]
.

An example of signal program is shown in Figure 2. Here
the program is T = {(p1, 25), (p′1, 30), (p2, 55), (p′2, 60)}.
which means that both the phases are activated for 25 seconds
each, and the clearance phases are activated for 5 seconds
each.

III. FEEDBACK CONTROLLERS

In this section, we present four different traffic signal
controllers that all determine the signal program. The first
two are to be interpreted as different discretizations of the
GPA controller, where the first one makes sure that all the
clearance phases are activated during one cycle, and the second
one only activates the clearance phases if their corresponding
phase has been activated. The third controller is the MaxPres-
sure controller, which by default does not guarantee cyclic
phase activation. The fourth controller is a modification of
MaxPressure, presented in [26], which ensures a cyclic phase
activation.

All the four controllers are feedback-based, i.e., when one
signal program has reached its end, the current queue lengths
are used to determine the upcoming signal program. Moreover,
the GPA controllers are fully distributed, in the sense that
in order to determine the signal program in one junction,
the controller only needs information about the queue-lengths
on the incoming lanes for that junction. The MaxPressure
controller is also distributed in the sense that it does not
require network-wide information, but it requires queue-length
information from the neighboring junctions as well.

For the sake of simplicity, we shall assume that after a
phase has been activated, a clearance phase has to be activated

for a fixed amount of time Tw > 0, that is independent of
which phase that has just been activated, for all the controllers
presented in this section.

A. GPA with Full Clearance Cycles

For this controller, we assume that all the clearance phases
have to be activated for each cycle. When t = T (j) for a
junction j, a new signal program is computed by solving the
following convex optimization problem:

maximize
ν ∈ Rnj

+

w ∈ R+

∑
l∈L(j)

xl(t) log
(

((P (j))T ν)l

)
+ κ log(w) ,

subject to
∑

1≤i≤nj

νi + w = 1 ,

w ≥ w̄ .

(1)

In the optimization problem above, κ > 0 and w̄ ≥ 0 are
tuning parameters for the controller, and their interpretation
will be discussed later. Recall that xl(t) is the measured queue
length on lane l at time t. Also observe that the for each
junction j ∈ J , the control action depends exclusively on the
queues on the incoming lanes. To stress out this dependence
we let x(j) denote the vector of queue lengths for the incoming
lanes to junction j, i.e., x(j) is the projection of x(t) on the
lanes in L(j). The objective function is the one used for the
GPA controller in [11], [12], where it is shown that this choice
of objective function achieves throughput-optimality for an
entire traffic network.

The entries of the vector ν in the solution of the optimization
problem above determine the fraction of the cycle time that
each phase should be activated. The variable w represents
the fraction of the cycle time that should be allocated to the
clearance phases. Because ν and w are determining fractions
of cycle, the entries of ν together with w have to sum up
to 1. Observe that, as long as the queue lengths are finite, w
will be strictly greater than zero. Since we assume that each
clearance phase has to be activated for a fixed amount of time,
Tw > 0, the total cycle length Tcyc for the upcoming cycle can
be computed by

Tcyc =
njTw
w

.

With the knowledge of the full-cycle length, the signal pro-
gram for the upcoming cycle can be computed according to
Algorithm 1.

Although the optimization problem (1) can be solved in
real-time using convex solvers, the optimization problem can
also be solved analytically in some special cases. One such
case is when the phases are orthogonal, i.e., every incoming
lane only belongs to one phase. If the phases are orthogonal,
then PT

1 = 1. In the case of orthogonal phases and w̄ = 0,
the solution to the optimization problem in (1) is given by

νi(x(t)) =

∑
l∈L(j) Pilxl(t)

κ+
∑

l∈L(j) xl(t)
, i = 1, . . . , nj ,

w(x(t)) =
κ

κ+
∑

l∈L(j) xl(t)
.

(2)
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Algorithm 1: GPA with Full Clearance Cycles

Data: Current time t, local queue lengths x(j)(t),
phase matrix P (j), clearance time Tw, tuning
parameters κ, w̄

Result: Signal program T (j)

T (j) ← ∅
nj ← Number of rows in P (j)

(ν, w) ← Solution to (1) given x(j)(t), P (j), κ, w̄
Tcyc ← nj · Tw/w
tend ← t
for i← 1 to nj do

tend ← tend + νi · Tcyc

T (j) ← T (j) + (pi, tend) . Add phase pi
tend ← tend + Tw
T (j) ← T (j) + (p′i, tend) . Add clearance phase p′i

end

From the expression of w above, a direct expression for the
total cycle length can be obtained

Tcyc = Twnj +
Twnj
κ

∑
l∈L(j)

xl(t) .

From the expressions above we can observe a few things.
First, we see that the fraction of the cycle time that each phase
is activated is proportional to the queue lengths in that phase,
and this explains why we call this control strategy generalized
proportional allocation. Moreover, we get an interpretation of
the tuning parameter κ, as it determines how the cycle length
Tcyc should scale with the current queue lengths. If κ is small,
even small queue lengths will cause longer cycles, while if κ
is large, the cycles will be short even for large queues. Hence,
too small κ may give too long cycles, which can result in
lanes getting more green light than needed and the controller
ending up giving the green light to empty lanes, while vehicles
in other lanes are waiting for service. On the other hand, too
large a κ may make the cycle lengths so short that the fraction
of the cycle time that each phase gets activated is too short
for the drivers to react on.

Remark 1: In [12] we showed that the averaged continuous-
time GPA controller can stabilize the network and hence keep
the queue-lengths bounded. Moreover, this averaged version is
throughput-optimal, which means that no controller can handle
more exogenous inflow to network than this controller.

However, when implementing the GPA controller, the con-
trol signal has to be discretized, i.e., the traffic signals are
either green or red for an amount of time. The following
example shows that an upper bound on the cycle length, i.e.,
w̄ > 0 is required to guarantee stability even for an isolated
junction when the control signal is discretized. This bound is
not required for the averaged controller in [12].

Example 2: Consider a junction with two incoming lanes
with unit flow capacity, both having their own phase, i.e., either
one of the lanes can receive green light, but not both lanes
simultaneously. Let the exogenous inflows of vehicles to each
of the two lanes be fixed such that λ1 = λ2 = λ. Moreover,
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Fig. 3. How the queue lengths evolve in time together with the cycle times
for the system in Example 2. We can observe that the cycle length increases
for each cycle.

we let the parameters Tw = 1, w̄ = 0, and we let the initial
state be x1(0) = A > 0, and x2(0) = 0. The control signals
and the cycle time for the first cycle is then given by

ν1(x(0)) =
A

A+ κ
, ν2(x(0)) = 0 , Tcyc(x(0)) =

A+ κ

κ
.

Observe that the cycle time Tcyc(x(0)) is strictly increasing
with the parameter A. After one full service cycle, i.e., at
time t1 = T (x(0)) the queue lengths are

x1(t1) = A+ T (x(0))

(
λ− A

A+ κ

)

= max

( f(A)︷ ︸︸ ︷
A+ λ

A+ κ

κ
− A

κ
, 0

)
,

x2(t1) = T (x(0))λ = λ

(
A+ κ

κ

)
.

If A and κ are chosen such that x1(t1) = 0, then due to
symmetry, the analysis of the system can be repeated in the
same way with a new initial condition. To make sure that one
queue always gets empty during the service cycles, it must
hold that f(A) ≤ 0. Moreover, to make sure that the other
queue grows larger than the previous queue, it must also hold
that x2(t1) > A which can be equivalently expressed as

Aκ+ λ(A+ κ)−A ≤ 0 ,

Aκ− λ(A+ κ) < 0 .

The choice of λ = κ = 0.1 and A = 1 is one set of
parameters satisfying the constraints above, and will hence
make the queue lengths and cycle times grow unboundedly.
How the queue lengths and cycle times evolve in this case is
shown in Figure 3.
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While imposing an upper bound on the cycle length, and hence
a lower bound on w, is necessary to obtain the stability, it
will shrink the throughput region. In other words, by setting
w̄ > 0 the controller will not be able to handle as large traffic
flows as if w̄ = 0. An upper bound on the cycle length may
occur naturally, due to the fact that the sensors cover a limited
area and hence the measurements will saturate. However, we
will later observe in the simulations that letting w̄ > 0 may
improve the performance of the controller when it is simulated
in a realistic scenario, even when saturation of the queue length
measurements is possible.

B. GPA with Shorted Cycles

One possible drawback of the controller in Section III-A is
that it has to activate all the clearance phases in one cycle. This
property implies that if the junction is empty when the signal
program is computed, it will take njTw seconds until a new
signal program is computed. Motivated by this shortcoming,
we also present a version of the GPA where only the clearance
phases get activated if their corresponding phases have been
activated. If we let n′j denote the number of phases that will
be activated during the upcoming cycle, the total cycle time
is given by

Tcyc =
n′jTw

w
.

How to compute the signal program in this case, is shown in
Algorithm 2.

C. MaxPressure

As mentioned in the introduction, the MaxPressure con-
troller is another throughput-optimal feedback controller for
traffic signals. The MaxPressure controller computes the dif-
ference between the queue lengths and their downstream queue
lengths in each phase in order to determine each phase’s pres-
sure. It then activates the phase with the largest pressure for
a fixed time interval. To compute the pressure, the controller
needs information about where the outflow from every queue
will proceed. To model this, we introduce the routing matrix
R of dimension |E|× |E|, whose entries Rij coincide with the
fraction of vehicles that will proceed from lane i in the current
junction to lane j in a downstream junction.

With the knowledge of the routing matrix and under the
assumption that the flow rates are the same for all phases, the
pressure ωi of each phase pi ∈ P(j) can then be computed as

ωi =
∑
l∈pi

(
xl(t)−

∑
k

Rlkxk(t)

)
. (3)

The phase that should be activated is then any phase in the
set argmaxi ωi .

Apart from the routing matrix, the MaxPressure controller
has one tuning parameter, the phase duration d > 0. That
parameter determines how long a phase should be activated
for, and hence how long it should take until the pressures are
resampled and a new phase activation decision is made.

How to compute the signal program with the MaxPressure
controller is shown in Algorithm 3.

Algorithm 2: GPA with Shorted Cycles

Data: Current time t, local queue lengths x(j)(t),
phase matrix P (j), clearance time Tw, tuning
parameters κ, w̄

Result: Signal program T (j)

T (j) ← ∅
nj ← Number of rows in P (j)

(ν, w) ← Solution to (1) given x(j)(t), P (j), κ, w̄
. Compute the number of phases to be activated
n′j ← 0
for i← 1 to nj do

if νi > 0 then
n′pj
← n′j + 1

end
end
if n′j > 0 then

. If vehicles are present on some phases, activate
those
Tcyc ← n′j · Tw/w
tend ← t
for i← 1 to nj do

if νi > 0 then
tend ← tend + νi · Tcyc
. Add phase pi
T (j) ← T (j) + (pi, tend)
tend ← tend + Tw
. Add clearance phase p′i
T (j) ← T (j) + (p′i, tend)

end
end

else
. If no vehicles are present, hold a clearance
phase for one time unit
T (j) ← (p′1, t+ 1)

end

D. Cyclic MaxPressure

While the standard MaxPressure controller does not pre-
serve the service cycle for a junction, a modified version that
makes sure that all the clearance phases get activated has
been presented in [26]. The controller computes the pressure
for each phase just like the MaxPressure controller, but then
activates each phase in proportion to

νi =
exp ηωi∑
j exp ηωj

,

where ω are the pressures form (3) and η > 0 is a tuning
parameter. Observe that, differently from the GPA controller,
the Cyclic MaxPressure controller assumes a fixed cycle
length, and hence

∑
1≤i≤nj

νi = 1.

IV. COMPARISON BETWEEN GPA AND MAXPRESSURE

A. Simulation setting

In order to compare the proposed GPA controller with
the MaxPressure controller, we simulate both controllers on
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Algorithm 3: MaxPressure
Data: Current time t, local queue lengths x(t), phase

matrix P (j), routing matrix R, phase duration d
Result: Signal program T (j)

T (j) ← ∅
nj ← Number of rows in P (j)

for i← 1 to nj do
for l ∈ L(j) do

if l ∈ p(j)i then
ωi ← ωi + xl(t)−

∑
k Rlkxk(t)

end
end

end
i← argmaxi ωi

. Add phase pi
T (j) ← T (j) + (pi, t+ d)
. Add clearance phase p′i
T (j) ← T (j) + (p′i, t+ d+ Tw)

1
2
3
4
5
6
7
8
9
10

A B C D E F G H I J

Fig. 4. The Manhattan-like network used in the comparison between GPA
and MaxPressure.

an artificial Manhattan-like grid with artificial demand. We
shall use the open-source micro-simulator SUMO [27], that
simulates every single vehicle’s behavior in the traffic network.
A schematic drawing of the network is shown in Figure 4. In a
setting like this, we can elaborate with the turning ratios, and
provide the MaxPressure controller both correct and incorrect
turning ratios. This allows us to investigate the robustness
properties of both the controllers.

The Manhattan grid in Figure 4 has ten bidirectional north-
to-south streets (indexed A to J) and ten bidirectional east-
to-west streets (indexed 1 to 10). All streets with an odd
number or indexed by letter A, C, E, G or I consist of
one lane in each direction, while the others consist of two
lanes in each direction. The speed limit on each lane is 50
km/h. The distance between each junction is 300 meters. Fifty
meters before each junction, every street has an additional
lane, reserved for vehicles that want to turn left. Due to the
varying number of lanes, there exist four different junction
topologies, all shown in Figure 5, together with the set of
possible phases. Each junction is equipped with sensors on
the incoming lanes that can measure the number of vehicles

2 by 2 junction 2 by 3 junction

3 by 2 junction 3 by 3 junction
Fig. 5. The four different types of junctions present in the Manhattan grid,
together with theirs phases.

queuing up to fifty meters from the junction. The sensors
measure the queue lengths by the number of stopped vehicles.

Since the scenario is artificial, we can generate demand
with prescribed turning ratios and hence let the MaxPressure
controller run in an ideal setting. For the demand generation,
we assume that at each junction, a vehicle will turn left with
probability 0.2, go straight with probability 0.6, and turn right
with probability 0.2. We do assume that all vehicles depart
from lanes connected to the boundary of the network, and
all vehicles will also end their trips when they have reached
the boundary of the network. In other words, no vehicles will
depart or arrive inside the grid. We will study the controllers’
performance for three different demands determined by the
probability that a vehicle departs from each boundary lane
at each second. We denote this probability δ, where the
probabilities for the three different demands are δ = 0.05,
δ = 0.1 and δ = 0.15. We generate vehicles for 3600 seconds
and then simulate until all vehicles have left the network.

We also compare the results for the GPA controller and
the MaxPressure controller with a standard fixed time (FT)
controller and a proportional fairness (PF) controller, i.e., the
GPA controller with full clearance cycles, but with κ = 0 and
a prescribed fixed cycle length. The reason for comparing with
those two controllers is to ensure that the GPA improves the
performance as compared to the standard fixed time controller
in SUMO and to illustrate that utilizing the proportional
fairness controller without adjusting the cycle length does
not necessarily improve the performance of the transportation
network. For the fixed time controller, the phases containing a
straight movement are activated for 30 seconds, and the phases
only containing left or right turn movements are activated for
15 seconds. The clearance time for each phase is still set to 5
seconds. This means that the cycle lengths for each of the four
types of junctions will be 110 seconds. This is also the fixed
cycle time we are using for the proportional fairness controller.
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TABLE I
GPA WITH SHORTED CYCLES - MANHATTAN SCENARIO

κ δ Total Travel Time [h]
1 0.05 1398
5 0.05 715

10 0.05 699
15 0.05 696
20 0.05 690
1 0.10 7636
5 0.10 1898

10 0.10 1992
15 0.10 2263
20 0.10 2495
1 0.15 +∞
5 0.15 5134

10 0.15 4498
15 0.15 5140
20 0.15 6050
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Fig. 6. How the queue lengths vary with time when the GPA with shorted
cycles are used in Manhattan grid. The GPA is tested with two different
values of κ = 5, 10 for the three demand scenarios δ = 0.05, 0.10, 0.15.
To improve the readability of the results, the queue-lengths are averaged over
300 seconds intervals.

B. GPA Results

Since the phases in this scenario are all orthogonal, the
expressions in (2) can be used to solve the optimization
problem in (1). The tuning parameter w̄ is set to w̄ = 0
for all simulations. In Table I, we show how the total travel
time varies for the GPA controller with shorted cycles for
different values of κ. For the demand, δ = 0.15 and κ = 1 a
gridlock situation occurs, probably because vehicles back-spill
into upstream junctions. We can see that a value κ = 10 seems
to be the best choice for δ = 1 and δ = 0.15, while a higher κ
slightly improves the total travel time for the lowest demand
investigated. Letting κ = 10 is reasonable for other demand
scenarios in the same network setting, as observed in [25].
How the total queue lengths varies with time for κ = 5 and
κ = 10 is shown in Figure 6.

C. MaxPressure Results

The MaxPressure controller decides its control action based
on not only queue-lengths on the incoming lanes but also the
downstream lanes. It is not always clear in which downstream
lane a vehicle will end up in after leaving the junction. If a

TABLE II
MAXPRESSURE - MANHATTAN SCENARIO

d δ TTT correct TR [h] TTT incorrect TR [h]
10 0.05 858 856
20 0.05 1 079 1 102
30 0.05 1 172 1 193
10 0.10 1 865 1 864
20 0.10 2 254 2 312
30 0.10 2 690 2 718
10 0.15 3 511 3 488
20 0.15 3 992 4 102
30 0.15 5 579 5 590

vehicle can choose between several lanes that are all valid for
its path, the vehicle’s lane choice will be determined during
the simulation and depends upon how many other vehicles
are occupying the possible lanes. Because of this, we assume
that if a vehicle can choose between several lanes, it will
try to join the shortest one. To exemplify how the turning
ratios are estimated in those situations, assume that the overall
probability that a vehicle is turning right is 0.2, and going
straight is 0.6. If a vehicle going straight can choose between
lanes l1 and l2, but l2 is also used by vehicles turning right,
the probability that the vehicle going straight will queue up in
lane l1 is assumed to be 0.4 and that the probability that the
vehicle will queue up in lane l2 is estimated to be 0.2.

To also investigate the MaxPressure controller’s robustness
with respect to the routing information, we perform simu-
lations both when the controller has the correct information
about the turning probabilities, i.e., that a vehicle will turn
right with probability 0.2, continue straight with probability
0.6 and turn left with probability 0.2. For the simulations
when the MaxPressure has the wrong turning information, the
controller instead has the information that with probability 0.6
the vehicle will turn right, with probability 0.3 the vehicle
will proceed straight and with probability 0.1 the vehicle will
turn left. In the simulations, we consider three different phase
durations, d = 10 seconds, d = 20 seconds and d = 30
seconds.

How the total queue lengths vary over time for the different
demands is shown in Figure 7, Figure 8, and Figure 9. The
total travel time, both when the MaxPressure controller is
operating with the right, and the wrong turning ratios are
shown in Table II. From these results, we can conclude
that a shorter phase duration, i.e., d = 10, is the most
efficient for all demands. This has probably to do with the
fact that, with a longer phase duration, the activation time is
becoming larger than the time it takes to empty the measurable
part of the queue. Another interesting observation is that if
the MaxPressure controller has wrong information about the
turning ratios, its performance does not decrease significantly.

D. Summary of the Comparison

To better observe the difference between the GPA and
MaxPressure, we have plotted the total queue length with
the GPA controller with κ = 5 and κ = 10, and the best
MaxPressure configuration with d = 10. The results are shown
in Figures 10, 11, and 12. In these figures, we have also



8

0 1,000 2,000 3,000 4,000 5,000

0

2 000

4 000

Time [s]

To
ta

l
Q

ue
ue

L
en

gt
h

[m
]

MP d = 10 MP d = 20 MP d = 30

Fig. 7. How the total queue lengths vary over time in the Manhattan grid with
the MaxPressure (MP) controller with correct turning ratios (solid) and wrong
turning ratios (dashed). The demand is δ = 0.05. To improve the readability
of the results, the queue-lengths are averaged over 300 seconds intervals.
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Fig. 8. How the total queue lengths vary over time in the Manhattan grid with
the MaxPressure (MP) controller with correct turning ratios (solid) and wrong
turning ratios (dashed). The demand is δ = 0.10. To improve the readability
of the results, the queue-lengths are averaged over 300 seconds intervals.
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Fig. 9. How the total queue lengths vary over time in the Manhattan grid with
the MaxPressure (MP) controller with correct turning ratios (solid) and wrong
turning ratios (dashed). The demand is δ = 0.15. To improve the readability
of the results, the queue-lengths are averaged over 300 seconds intervals.

TABLE III
FIXED TIME AND PROPORTIONAL FAIR CONTROL - MANHATTAN

SCENARIO

Controller δ Total Travel Time [h]
FT 0.05 1201
FT 0.10 2555
FT 0.15 4642
PF 0.05 1694
PF 0.10 4165
PF 0.15 +∞
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Fig. 10. A comparison between different control strategies for the Manhattan
grid with the demand δ = 0.05.o improve the readability of the results, the
queue-lengths are averaged over 300 seconds intervals.

included for reference the total queue lengths for the fixed time
controller and the proportional fairness controller. The total
travel times for those controllers are given in Table III. When
the demand is δ = 0.15, a gridlock situation occurs with the
proportional fairness controller, just as with the GPA controller
with κ = 1. From the simulations we can conclude that, for
this scenario and during high demands, the MaxPressure con-
troller performs better than the GPA controller, while during
low demands, the GPA performs better. One explanation for
this could be that during low demands, adapting the cycle
length is critical, while during high demands when almost
all the sensors are covered, it is more important to keep the
queue balanced between the current and downstream lanes.
The proportional fairness controller that does not adapt its
cycle length, always performs the worst. In most of the cases,
a fixed time controller performs second worst. It is just for
the demand δ = 0.15, and during the draining phase that the
fixed time controller performs better than the GPA controller.

V. SIMULATIONS IN THE LUST SCENARIO

To test the GPA controller in a realistic scenario, we
make use of the Luxembourg SUMO Traffic (LuST) scenario
presented in [28]1. The scenario models the city center of Lux-
embourg during a full day, and the authors of [28] have made
several adjustments from some given population data when
creating the scenario, to make it as realistic and well-calibrated
as possible. For more information about the calibration of this
scenario, we refer the reader to [28].

1The scenario files are obtained from https://github.com/lcodeca/
LuSTScenario/tree/v2.0

https://github.com/lcodeca/LuSTScenario/tree/v2.0
https://github.com/lcodeca/LuSTScenario/tree/v2.0
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Fig. 11. A comparison between different control strategies for the Manhattan
grid with the demand δ = 0.10. To improve the readability of the results, the
queue-lengths are averaged over 300 seconds intervals.
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Fig. 12. A comparison between different control strategies for the Manhattan
grid with the demand δ = 0.15. Since the proportional fairness controller
(PF) creates a gridlock, it is not included in the comparison. To improve the
readability of the results, the queue-lengths are averaged over 300 seconds
intervals.

Fig. 13. The traffic network of Luxembourg city

The LuST network is shown in Figure 13. To each of the
199 signalized junctions, we have added a lane area detector
to each incoming lane. The length of the detectors are 100
meters, or as long as the lane lasts if the lane is shorter than
100 meters. Those sensors are added to give the controller real-
time information about the queue-lengths at each junction.

As input to the system, we are using the Dynamic User
Assignment demand data. For this data-set, the drivers take
their shortest path (with respect to travel time) between their
current position and their destination. It is assumed that 70
percent of the vehicles can recompute their shortest path while
driving, and will do so every fifth minute. This rerouting
possibility is introduced to model the fact that more and more
drivers are using online navigation with real-time traffic state
information. If so, the drivers will get updates about what the
optimal route choice is during their trips.

In the LuST scenario, the phases are constructed in a bit
more complex way and are not always orthogonal. For non-
orthogonal phases, it is not always the case that all lanes
receive yellow light when a clearance phase is activated. If the
lane receives a green light in the next phase as well, it will
receive green light during the clearance phase too. Since we
do not change the phase structure with respect to the original
scenario, it means that just activate the phase following the
phase just activated is not enough to make sure that all lanes
receive a yellow light before a red light. For this reason, we
choose to implement the controller which activates all the
clearance phases in the cycle, i.e., the controller that is given
in Section III-A and Section III-D.

As mentioned, the phases in the LuST scenario are not or-
thogonal in each junction. Hence we have to solve the convex
optimization problem in (1) to compute the phase activation.
The computation is done by using the solver CVXPY2 in
Python. Although the controller can be implemented in a
distributed manner, the simulations in this paper are performed
on a single computer. Despite the size of the network and the
fact that the communication via TraCI between the controller
written in Python and SUMO slows down the simulations
significantly, the simulations are still running about 2.5 times
faster than real-time on a regular CPU. The computation times
suggest that there is no problem with running this controller
in a real-time setting.

Since the demand is high during the peak hours in the sce-
nario, gridlock situations occur. Those kinds of situations are
unavoidable since there will be conflicts in the car-following
model. To make the simulation continue to run, SUMO has a
teleporting option that is utilized in the original LuST scenario.
The original LuST scenario is configured in such a way that
if a vehicle has been looked for more than 10 minutes, it will
teleport along its route until there is free space. It is therefore
important when we evaluate the control strategies that we
keep track of the number of teleports, to make sure that the
control strategy will not create a significantly larger amount
of gridlocks, compared to the original fixed time controller.
In Table IV, the number of teleports are reported for each
controller. It is also reported how many of those teleports that

2https://cvxpy.org
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TABLE IV
COMPARISON OF THE DIFFERENT CONTROL STRATEGIES

κ w̄ Teleports (jam) Total Travel Time [h]
GPA 10 0 76 (6) 49 791
GPA 10 0.05 65 (1) 49 708
GPA 10 0.10 37 (0) 49 519
GPA 10 0.15 57 (19) 49 408
GPA 10 0.20 50 (10) 49 380
GPA 10 0.25 35 (0) 49 265
GPA 10 0.30 30 (0) 48 930
GPA 10 0.35 25 (1) 48 922
GPA 10 0.40 51 (0) 48 932
GPA 10 0.45 49 (5) 49 076
GPA 10 0.50 42 (15) 49 383
GPA 5 0 668 (76) 57 249
GPA 5 0.05 234 (62) 54 870
GPA 5 0.10 68 (10) 52 038
GPA 5 0.15 47 (9) 50 696
GPA 5 0.20 50 (6) 49 904
GPA 5 0.25 41 (3) 49 454
GPA 5 0.30 23 (0) 48 964
GPA 5 0.35 30 (1) 48 643
GPA 5 0.40 35 (5) 48 445
GPA 5 0.45 39 (1) 48 503
GPA 5 0.50 42 (10) 48 772
Fixed time – – 122 (80) 54 103
Cyclic MP η = 0.05 40 (0) 56 049
Cyclic MP η = 0.1 55 (2) 55 367
Cyclic MP η = 0.5 93 (7) 55 574
Cyclic MP η = 1 1923 (1277) 61 566

are caused directly due to traffic jam, but one should have in
mind that, e.g., a gridlock caused by two vehicles that want
to swap lanes is often a consequence of congestion.

The total travel time and the number of teleports for
different choices of tuning parameters are shown in Table IV.
For the fixed time controller, we keep the standard fixed time
plan provided with the LuST scenario. How the queue lengths
vary with time for different w̄ is shown in Figure 14 for κ = 5
and in Figure 15 for κ = 10.

From the results, we can see that any controller with
κ = 10 and w̄ within the range of investigation will improve
the traffic situation. However, the controller that yields the
overall shortest total travel time is the one with κ = 5 and
w̄ = 0.40. This result suggests that tuning the GPA only
with respect to κ, and keep w̄ = 0, may not lead to the
best performance concerning total travel time, although it gives
higher theoretical throughput.

For comparison, we have also implemented the Cyclic
MaxPressure. For this controller, we are using the same cycle
length in each junction as the provided for the Fixed Time
controller, and as an estimate for the routing matrix, we assume
that the vehicles split up equally among the downstream lanes.
The results for different choices of η is shown in Table IV.
From Table IV and Figure 14–15 it can be concluded that
the Cyclic MaxPressure does not improve the traffic situation,
while the GPA with the right choice of parameters does.

VI. CONCLUSION

In this paper, we have discussed the implementational
aspects of the Generalized Proportional Allocation controller.
The controller’s performance was compared to the MaxPres-
sure controller both on an artificial Manhattan-like grid and
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Fig. 14. How the queue lengths vary with time when the traffic signals in the
LuST scenario are controlled with three different controllers: GPA controller,
Cyclic MaxPressure (MP) controller, and the standard fixed-time controller.
For the GPA controller the parameters κ = 5 and different values of w̄
are tested. To improve the readability of the results, the queue-lengths are
averaged over 300 seconds intervals.
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Fig. 15. How the queue lengths vary with time when the traffic lights in the
LuST scenario are controlled with the GPA controller, Cyclic MaxPressure
(MP) controller, and the standard fixed-time controller. For the GPA controller
the parameters κ = 10 and different values of w̄ are tested. To improve the
readability of the results, the queue-lengths are averaged over 300 seconds
intervals.

for a real scenario. In comparison with MaxPressure, it was
shown that the controller performs better than the MaxPressure
controller when the demand is low, but the MaxPressure
performs better during high demand. Those observations hold
even if the MaxPressure controller does not have correct
information about the turning ratios in each junction.

While the information about the turning ratios and the
queue lengths at neighboring junctions are needed for the
MaxPressure controller, the GPA controller does not require
any such information. This makes the GPA controller easier to
implement in a real scenario, where the downstream junction
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may not be signalized and equipped with sensors. We showed
that it is possible to both implement the GPA controller in a
realistic scenario covering the city of Luxembourg and that
it improves the traffic situation compared to a standard fixed
time controller. The GPA controller also performs better than
the Cyclic MaxPressure controller.

In all simulations, we have used the same tuning parameters
for all junctions in the LuST scenario, while the fixed time
controller is different for different junction settings. Hence the
GPA controller’s performance can be improved even more by
tuning the parameters individually for each junction. Ideally,
this should be done with some auto-tuning solution, but it may
also be worth to take static parameters into account, such as
the sensor lengths. This is a topic for future research.
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