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Abstract: The fast-increasing demand and relatively slow growth of infrastructure capacity are
providing a strong motivation for research in real-time urban traffic controls that make the best
use of novel sensing in order to increase efficiency and resilience of the transportation system.
In our contribution, we focus on a class of dynamic feedback traffic signal control policies that
are based on a generalized proportional allocation rule. The proposed traffic signal controls are
decentralized (they make use of local information only), scalable (they are independent of the
network size and topology), and universal (they do not rely on any information about external
inflows or turning ratios). In spite of their fully distributed nature, we prove that such control
policies achieve a global objective, maximum throughput, in that they stabilize the urban traffic
network whenever possible under the given capacity constraints.
The traffic model we consider consists in a network of interconnected vertical queues with
deterministic dynamics driven by physical laws (conservation of mass and preservation of non-
negativity of the traffic volumes) as well as scheduling constraints (described as a set of phases,
each phase consisting in a subset of lanes that can be be given green light simultaneously).
This results in a differential inclusion for which we prove existence and, in the special case
of orthogonal phases, uniqueness of continuous solutions via a generalization of the reflection
principle. Stability is then proved by interpreting the generalized proportional allocation
controllers as minimizers of a certain entropy-like function that is then used as a Lyapunov
function for the closed-loop system.
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1. INTRODUCTION

In today’s transportation systems, traffic signal control
plays a key role for maximizing throughput and reducing
congestion. In order to design traffic signal controllers,
one approach is to used fix-timed controllers, as proposed
in e.g., Miller (1963). To achieve more robustness under
changing arrival rates, constantly re-tuned controllers have
been developed for several cities, for example SCOOT,
see Bretherton et al. (1998). With the recent development
of cheap and reliable sensors, the stage is now set for the
introduction of feedback-based traffic light controllers.

In queuing networks, research on stabilizing feedback
controllers has been ongoing for some decades. While the
original back-pressure controller presented in Tassiulas
and Ephremides (1992) is not directly applicable to road
traffic networks, 1 recent works such as Varaiya (2013b),
Varaiya (2013a) and Wongpiromsarn et al. (2012) have
adapted it to the purpose by giving the back-pressure

? The authors are members of the excellence centers LCCC and
ELLIIT. The work was partially supported by the Swedish Research
Council through Project Research Grant 2015-04066 and by the
Compagina di San Paolo.
1 The controller assumes that vehicles are distinguishable by their
destination, and cannot for instance handle when a lane is used both
for right turns and vehicles that want to proceed straight forward.

controller exogenous information about the turning ratios.
However, the turning ratios are often difficult predict with
high accuracy. In Gregoire et al. (2014) the dependency of
the turning ratios is avoided by letting the back-pressure
controller check if the incoming queue-lengths are above
a certain threshold level and react to that. However,
this modification leads to an unspecified shrinkage of the
network’s stability region. In Le et al. (2015) a solution is
proposed on how to construct a back-pressure controller
relaying of estimates of the turning ratios.

In this paper, we study feedback traffic signal control
policies that are based on a generalized proportional allo-
cation rule. These controls do not require any information
about the turning ratios or the external arrival rates (a
property referred to as universality), they are independent
of the network size and topology (scalability), and make
use of local information only (decentralized). 2 The stabil-
ity analysis of the proportional allocation policy for data
networks was first done in Massoulié (2007) while Walton
(2014) studies stability in a multi-commodity setting.

2 In fact, as compared to the back-pressure controllers, the gen-
eralized proportional allocation controllers proposed here requires
state information about the incoming lanes, while the back-pressure
controller requires information about the outgoing lanes as well.



We focus on the continuous-time traffic network dynamical
model first studied in Savla et al. (2013), Savla et al.
(2014), and Nilsson et al. (2015), and extend the results
proved there in several directions. First, while the analysis
in Savla et al. (2013) and Savla et al. (2014) was restricted
to acyclic network topologies and built on monotone flow
networks techniques (c.f. Como et al. (2013, 2015); Lovisari
et al. (2014); Como (2017)), we consider here general net-
work topologies for which the resulting closed-loop traffic
network dynamics are not monotone. This requires the use
of different techniques to establish stability, in particular
suitable entropy-like Lyapunov functions, similar to those
used in Massoulié (2007) for data networks and adapted
to traffic networks in Nilsson et al. (2015).

Second, in contrast to Nilsson et al. (2015) where sta-
bility of generalized proportional allocation policies was
studied in a setting where only one incoming lane to each
junction can receive green light simultaneously, we handle
the general case where several lanes can receive green
light simultaneously in each phase. Far from being trivial,
this generalization implies several additional challenges,
in particular related to the fact that the resulting traffic
network dynamics can no longer be expressed as a regular
(Lipschitz-continuous) differential equation, for which ex-
istence and uniqueness of solutions are standard facts. This
problem results from the fact that, if there are phases that
contain more than one lane, then the generalized propor-
tional allocation controller can assign green light to empty
lanes, so that the dynamics when some lanes are empty
needs to be properly modified in order to guarantee that
traffic volumes remain nonnegative over time (equivalently,
the nonnegative orthant is an invariant set).

In this paper, we handle this issue by first formulating
the closed-loop controlled traffic network dynamics as a
differential inclusion that incorporates all the mass con-
servation, non-negativity, and traffic signal control con-
straints. This is quite a natural model choice for traffic
queues and has previously been proved to be the fluid
limit of queueing networks, see e.g. Massoulié (2007), as
well as traffic networks, see Muralidharan et al. (2015).
While existence of continuous solutions then follows from
general results on differential inclusions, one of our main
contributions consists in proving existence and uniqueness
of solutions for the case where the phases are locally
orthogonal (equivalently, that each lane belongs to at most
one local phase): this result is stated in Theorem 1.

Another benefit of the chosen differential inclusion ap-
proach is that the stability result holds for every absolutely
continuous solution of the differential inclusion. Such sta-
bility analysis includes additional challenges with respect
to the case addressed in Nilsson et al. (2015): in particular,
we use an argument based on LaSalle’s principle.

We end this section by introducing some basic notation.
Let R denote the set of real numbers and R+ the set of
nonnegative reals. For finite sets A and B, let |A| denote
the cardinality of A and RA the space of real-valued
vectors whose elements are indexed by A. Let G = (E ,V)
denote a directed multigraph where E is the set of directed
links and V is the set of vertices or nodes. For each link
e = (i, j) ∈ E , let τe = j ∈ V denote the head of the link e
and σe = i ∈ V the tail of the link e.

2. TRAFFIC NETWORK DYNAMICS MODEL

We model the traffic network as a directed multigraph
G = (V, E), where V = {1, . . . ,m} is the set of nodes that
represent signalized junctions and E = {1, . . . , n} is the set
of links that represent lanes. To each lane, two nonnegative
variables are associated: the traffic volume xi(t) and the
outflow zi(t). While we assume no a priori upper bound on
the traffic volume xi ≥ 0, we will assume that the outflow
is upper bounded by a constant flow capacity, ci > 0, so
that 0 ≤ zi ≤ ci for all i ∈ E . Traffic volumes, outflows
and capacities for each lane are all stacked up into vectors
x(t) ∈ RE+, z(t) ∈ RE+ and c ∈ RE+, respectively. Moreover
the notation C = diag (c) is used for the diagonal matrix
with the diagonal c. The non-negativity constraints on the
traffic volume can then be compactly written as

x ≥ 0 , (1)

while the non-negativity and capacity constraints on the
outflow can be expressed as

0 ≤ z ≤ c . (2)

Traffic propagates among consecutive lanes according to
a routing matrix R ∈ Rn×n+ whose (i, j)-th entry Rij —
referred to as a turning ratio— represents the fraction of
flow out of lane i that proceeds towards lane j. Conserva-
tion of mass implies that

∑
j∈E Rij ≤ 1 for all i ∈ E , the

quantity 1−
∑
j∈E Rij ≥ 0 representing the fraction of flow

out of lane i that leaves the network directly from lane i.
In other terms, the routing matrix R is row-substochastic.
Inflows from the external environment are modeled by
an exogenous and possibly time-varying arrival vector
λ = λ(t) ∈ Rn+, whose entries λi ≥ 0 describe the external
inflows on the lanes i ∈ E .

Definition 1. The routing matrix R is said to be: adapted
to G if Rij = 0 for all i, j ∈ E such that τi 6= σj , i.e.,
Rij = 0 whenever lane i does not end in the junction
where lane j starts; outflow-connected if, for every i ∈ E ,
there exists some j ∈ E with

∑
k∈E Rjk < 1 and a path

i = i0, i1, . . . , il = j that starts in i, ends in j, and is such
that Π1≤i≤lRi−1,i > 0; inflow-connected with respect to
an arrival vector λ ∈ Rn+ if, for every j ∈ E , there exists
some i ∈ E and a path i = i0, i1, . . . , il = j that starts in
i, ends in j, and is such that Π1≤i≤lRi−1,i > 0.

For a given network topology G, a routing matrix R
adapted to G, and an arrival vector λ, we consider the
traffic network dynamics

ẋ = λ+ (RT − I)z . (3)

Observe that the i-th row of equation (3),

ẋi = λi +
∑
j

Rjizj − zi ,

can be interpreted as a law of mass conservation as
it equates the traffic volume’s growth rate ẋi to the
imbalance between the total inflow in lane i and the total
outflow zi from it, the former being given by the sum of
the arrival rate and the total outflow from other lanes that
is directed to lane i.

In addition to the capacity and non-negativity constraints
(2), the outflow vector z is required to satisfy scheduling
constraints as follows. Let a feasible phase be a subset
of lanes that can be given green light simultaneously,
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Fig. 1. Three non-zero phases for network with 6 lanes.

and let P ⊆ {0, 1}E be the set of all feasible phases.
We shall denote by p = |P| the total number of feasible
phases and compactly represent the feasible phase set P
as a binary matrix P ∈ {0, 1}n×p whose entries Pij are
such that Pij = 1 if lane i is given green light during
phase j, and Pij = 0 otherwise. Throughout, we shall
assume that the empty phase (green light to no lane)
is always a feasible phase, equivalently, that the feasible
phase matrix P contains a column of all 0s, that, without
loss of generality we will assume being the last, i.e., the
p-th, one. E.g., the network in Fig. 1 has n = 6 lanes and
p− 1 = 3 non-zero feasible phases: its phase matrix is

P =

1 1 0 0 0 1
0 1 1 1 0 0
0 0 0 0 1 1
0 0 0 0 0 0


T

.

Let us denote the unit p-simplex by

U = {u ∈ Rp+ : 1Tu = 1}
and let

u ∈ U (4)

be a control signal whose entries are to be interpreted as
the fractions of time allocated to each phase. Considering
that 0 ≤ zi ≤ ci when lane i is given green light whereas
zi = 0 when it is not, we have that, for a given control
signal u ∈ U the outflow vector must satisfy the constraint

0 ≤ z ≤ CPu . (5)

Observe that (4)–(5) imply (2), but not vice versa, i.e., for
any outflow z ≤ c, there may not exist a z satisfying (4)–
(5) except for the trivial case when P contains the all-1
phase (green light to every lane simultaneously). Moreover,
we will assume that the outflow from a nonempty lane is
always the maximum possible given the control u, i.e., that

x′(CPu− z) = 0 . (6)

In fact, the constraint above, combined with (5) implies
that the inequality zi ≤ ci

∑
j(Pijuj) can be strict only

when xi = 0: indeed, allowing for the possibility of a strict
inequality zi < ci

∑
j(Pijuj) when xi = 0 proves necessary

in order to meet the nonnegativity constraint xi ≥ 0.

Throughout, we will use the following definition of solution
of the traffic network dynamics and of its stability.

Definition 2. A solution of the traffic network dynamics
associated to a routing matrix R adapted to a network
topology G and a possibly time-varying arrival vector λ is
a triple of trajectories (x(t), z(t), u(t))t≥0 such that x(t)
is absolutely continuous and the constraints (1)–(6) are
satisfied for almost all t ≥ 0. A solution of the traffic
network dynamics is stable if there exists a constant vector
b ∈ Rn+ such that x(t) ≤ b for all t ≥ 0. The traffic network
dynamics is said to be stable if all its solutions are stable.

Proposition 1. (Necessary condition for stability). Let R
be an outflow-connected routing matrix adapted to a
network topology G and λ a possibly time-varying arrival

vector. Let P be a feasible phase matrix with p phases, U
the unit p-simplex, and

CPU := {z ∈ Rn : 0 ≤ z ≤ CPu for some u ∈ U} . (7)

If the traffic dynamics (1)–(6) admit a stable solution, then

the average arrival vector λ(t) = 1
t

∫ t
0
λ(s)ds satisfies

lim
t→+∞

dist
(
(I −RT )−1λ(t), CPU

)
= 0 . (8)

In particular, if the arrival vector λ ∈ Rn+ is constant, then

(I −RT )−1λ ∈ CPU . (9)

Proposition 1 establishes a fundamental limit for stability
that depends only on the arrival rates, network topology,
lane capacities, and phase set, but otherwise holds true for
every control strategy (e.g., time-varying, feedback, feed-
forward) and every solution of the traffic network dynam-
ics (1)–(6). In particular, it does not have any implication
on the existence and uniqueness of such solutions.

In fact, standard results from the theory of differential
inclusions (Aubin and Cellina, 1984, Theorem 4, p. 101)
guarantee that, if u ∈ U(x) where x 7→ U(x) ⊆ U is
closed, convex and upper semicontinuous as a set-valued
map, then existence (but not, in general, uniqueness) of
continuous solutions is guaranteed. The following result
establishes existence and uniqueness of a solution to the
traffic network dynamics when using static Lipschitz-
continuous feedback controls.

Theorem 1. (Existence and uniqueness of solutions). Let
R be an outflow-connected routing matrix adapted to a
network topology G and λ a possibly time-varying arrival
vector. Let P be a feasible phase matrix with p phases,
U be the unit p-simplex, and x 7→ u(x) ∈ U be a static
feedback control policy that is Lipschitz-continuous on Rn+.
Then, for every nonnegative initial traffic volume x(0),
the traffic network dynamics (1)–(6) with feedback control
u = u(x) admit a unique solution.

The proof of Theorem 1 relies on a generalization of the re-
flection principle, Harrison and Reiman (1981), which has
previously been applied to open loop traffic light control
in Muralidharan et al. (2015), to cases with feedback.

3. DECENTRALIZED TRAFFIC SIGNAL CONTROLS
AND PROPORTIONAL ALLOCATION POLICIES

In this section, we first introduce the notion of decentral-
ized feedback controls, and then introduce the generalized
proportional allocation policies. Let

E =
⋃

1≤k≤q

Ek , Ek ∩ Ek′ = ∅ , k 6= k′ (10)

be a partition of the set of lanes. We refer to such a
partition (10) as compatible with the feasible phase set
P ⊆ {0, 1}n if the latter can be written as the direct sum
of the subsets of phases supported on each Ek, i.e., if

P =
⊕

1≤k≤q

Pk , Pk = {ψ ∈ P : ψi = 0 ∀i ∈ E \ Ek} .

(11)
Observe that, with this construction of Pk, the all zero
vector belongs to each Pk. For 1 ≤ k ≤ q, put nk = |Ek|,
pk = |Pk|, and let the projection matrix on the nk-
dimensional subspace of vectors in Rn supported on Ek
be denoted by Λ(k), so that
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Fig. 2. The two merges in Example 1.

n =

q∑
k=1

nk , p =

q∏
k=1

pk , ψ =
∑

1≤k≤q

Λ(k)ψ , ψ ∈ P .

Then, the direct sum in (11) means that

Λ(k)ψ ∈ Pk , ψ ∈ P , 1 ≤ k ≤ q .

Observe that at least one trivial compatible partition
always exists, with q = 1, E1 = E , and P1 = P. A
typical case of non-trivial partition of the lane set E
that is compatible with P is obtained when phases are
independent across different junctions: in this case, one
can choose q = m equal to number of nodes in the graph
G = (V, E) and let Ek coincide with the set of in-links from
each node k ∈ V.

For a partition (10) of the lane set E that is compatible
with the phase set P, let

Uk = {u(k) ∈ Rpk+ : 1Tu(k) = 1} , 1 ≤ k ≤ q
be the unit pk-simplex and denote by P (k) ∈ {0, 1}n×pk the
binary matrix whose columns coincide with the phases in
Pk. It follows that, for every control signal u ∈ U , where
U is the unit p-simplex, one has that

Pu =
∑

1≤k≤q

P (k)u(k) , u(k) ∈ Uk , 1 ≤ k ≤ q .

In other terms, there is no loss of generality in restricting
attention to control signals u ∈ U of the form

uj =
∏

1≤k≤q

u
(k)
hk(j)

, 1 ≤ j ≤ p , (12)

where u(k) ∈ Uk and 1 ≤ hk(j) ≤ pk is the index such that

Pij = (Λ(k)P )i,(hk(j)) , 1 ≤ i ≤ n , 1 ≤ j ≤ p .
Example 1. Consider a small network with two consecu-
tive merges, as depicted in Fig. 2. Suppose that each merge
is controlled separately, and each merge can only give green
light to one incoming lane at the time. Then

P (1) =

[
1 0 0 0
0 1 0 0
0 0 0 0

]T
and P (2) =

[
0 0 1 0
0 0 0 1
0 0 0 0

]T
.

Hence, P is given by

P =

1 0 0 0 1 0 1 0 0
0 1 0 0 0 1 0 1 0
0 0 1 0 1 1 0 0 0
0 0 0 1 0 0 1 1 0

 .
Now, suppose that u(1) = [0.2 0.3 0.5]

T
and u(2) =

[0.1 0.7 0.2]
T

. Then, e.g., u3 is given by

u3 = u
(1)
h1(3)

· u(2)h2(3)
= u

(1)
3 · u

(2)
1 = 0.5 · 0.1 = 0.05 ,

and the full u-vector is given by

u = [0.02 0.03 0.05 0.14 0.04 0.21 0.35 0.06 0.1]
T
.
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Fig. 3. An example of orthogonal phases. Here lane 1 and
2 belong to one phase, and lane 3 to another.

We will refer to feedback controls u(x) as decentralized
according to a compatible partition (10) if

uj(x) =
∏

1≤k≤q

u
(k)
hk(j)

(x(k)) , 1 ≤ j ≤ p , (13)

where
x(k) = Λ(k)x , 1 ≤ k ≤ q ,

is the vector of local state information. Notice that,
for non-trivial compatible partitions, in contrast to (12),
equation (13) imposes an actual restriction, as it constrains
the local control signal u(k) on depending on local state
feedback x(k) only, as opposed to global state feedback x.

Let P ⊆ {0, 1}n be a set of p feasible phases containing the
empty phase 0, and P ∈ {0, 1}n×p be the corresponding
phase matrix. We refer to P as an orthogonal feasible phase
set if all phases are disjoint, equivalently, if the every pair
of columns of P has null scalar product. For an example
of orthogonal phases, see Fig. 3. Throughout this section
we shall focus on orthogonal phase sets, while we shall
generalize our results to possibly nonorthogonal phase sets
in Section 5.

Given an orthogonal set of admissible phases P, a com-
patible partition of the set of lanes as in (10), and a vector
ξ ∈ Rq with strictly positive entries, define the generalized
proportional allocation control as the decentralized feed-
back control (13) with, for 1 ≤ k ≤ q,

u(k)pk
(x(k)) =

ξk
ζk(x)

, ζk(x) = ξk + (x(k))TP (k)1 ,

u
(k)
h (x(k)) =

1

ζk(x)

∑
j∈Ek

P
(k)
jh xj , 1 ≤ h < pk .

(14)

The positive parameters ξk can be interpreted as capturing
in our continuous-time model the constraint that a fraction
of the cycle length is allocated to the all-red phase (i.e.,
phase index pk) as required by, e.g., safety concerns and
phase changes. Notice that their introduction makes the
feedback controls in (14) Lipschitz-continuous in x, hence
Theorem 1 can be applied in order to establish existence
and uniqueness of a solution for every initial traffic volume
vector x(0). The reason for referring to the decentralized
feedback control (13)–(14) as generalized proportional
allocation control is clarified by the following special case.

Example 2. For a partition of the set of lanes as in (10),
let the feasible phase set be

P =
⊕

1≤k≤q

Pk , Pk = {0} ∪ {δ(i) : i ∈ Ek} , 1 ≤ k ≤ q .

I.e., the feasible phases are those whereby at most one
lane from each subset Ek can be activated simultaneously.
Let us label lanes so that Ek = {ik,h : 1 ≤ h ≤ nk} and
observe that pk = nk + 1 for 1 ≤ k ≤ q. We can then order
columns in P (k) in such a way that the all-zero one comes



last (with index nk + 1) while, for 1 ≤ h ≤ nk the h-th
column of P (k) has a 1 in its ik,h-th entry and all zeros
elsewhere. Then, (14) reduces to

u
(k)
h (x(k)) =

xik,h

ξk +
∑

1≤l≤nk

xik,l

, 1 ≤ h ≤ nk ,

u
(k)
nk+1(x(k)) =

ξk

ξk +
∑

1≤l≤nk

xik,l

,

that shows that priority is allocated to the different lanes
in each Ek proportionally to their current traffic volume.

4. STABILITY ANALYSIS

We will assume from now on that the exogenous arrival
are constant s.t. λ(t) = λ, then the arrival rate for each
lane at equilibrium, a ∈ RE+, can be computed by

a = (I −RT )−1λ .

We will moreover assume that the routing matrix R is
inflow-connected with respect to λ, so that a > 0.

Theorem 2. (Stability of proportional allocation policies).
Let R be a routing matrix adapted to a network topology
G and λ a constant arrival vector, such that R is both
outflow-connected and inflow-connected with respect to λ.
Let P be a feasible phase set with p phases and corre-

sponding matrix P , U the unit p-simplex, and C̃PU be
the interior of CPU . For any partition (10) of the lane set
that is compatible with P, let u(x) be the proportional
controller given by (13)–(14). Then, if

(I −RT )−1λ ∈ C̃PU , (15)

the traffic network dynamics (1)–(6) are stable and every
solution x(t) approaches the set

X = {x ∈ RE+ : xT
(
CPu(x)− (I −RT )−1λ

)
= 0}

as t grows large.

Remark 1. In the specific case in Example 2 the solution
to the dynamics (1)–(3) converges to a globally asymp-
totically stable equilibrium x∗ ∈ RE+, which was proven
in Nilsson et al. (2015).

5. PROPORTIONAL ALLOCATION CONTROL
WITH NONORTHOGONAL PHASES

In this section, we discuss extensions of the control policy
and stability results of Sections 3 and 4, respectively, to
the case when phases are not necessarily orthogonal. We
start by observing that, in the case of orthogonal phases,
the controller in (14) coincides with the unique solution to
the following concave maximization problem

u(k)(x) ∈ argmax
ν∈Uk

∑
i∈Ek

xi log
∑

1≤j<pk

P
(k)
ij νj + ξk log νpk .

(16)

For the non-orthogonal phase sets, we define the control
policy as any choice of an optimal solution in the max-
imization problem (16). In this case, the control signal
may not be uniquely determined, as the following example
shows.

Example 3. Consider a partition k with three lanes (in-
dexed {1, 2, 3}), all with unit capacity. Let the phase
matrix be

P (k) =

[
1 0 0
1 1 0
0 1 0

]
.

The maximization problem in (16) then becomes

u(k)(x) ∈ argmax
ν∈Uk

x1 log(ν1) + x2 log(ν1 + ν2)

x3 log(ν2) + ξk log(ν3) .

The solution to the maximization problem is:

• If x1 = 0, x2 > 0, x3 = 0, then

0 ≤ u1 ≤
x2

x2 + ξk
, u2 =

x2
x2 + ξk

− u1 ,

u3 = 1− u1 − u2 = 1− x2
x2 + ξk

.

• For all other cases,

u1 =
x1(x1 + x2 + x3)

(x1 + x3)(x1 + x2 + x3 + ξk)
, u2 =

x3
x1
u1 .

Let us specifically point out the need of differential inclu-
sion in our model. Assume that the lanes have exogenous
inflows, λ1, λ2 and λ3, respectively, and no inflows from
other lanes. Let x1 = 0 and x3 = 0, then

u1 + u2 =
x2

x2 + ξk
.

Now suppose that λ1 + λ3 < u1 + u2. To keep x(t) ≥ 0,
we have to choose z1, z2 such that z1 ≤ λ1 and z3 ≤ λ3.
However, choosing z1 < λ1 or z3 < λ3, will make ẋ1 > 0
or ẋ3 > 0, and the traffic volumes will become positive.
Let us for simplicity assume that z1 = 0 and z3 = λ3, then
after a sufficiently small time, x1 > 0 and

u1 =
x1 + x2

x1 + x2 + ξk
> λ1,

and x1 will immediately go back to zero again. Therefore
this solution can not be absolutely continuous. To get
an absolutely continuous solution in this case one has to
choose z1 = λ1 and z3 = λ3.

Remark 2. From Example 3 it is easy to observe that the
equilibrium does not have to be unique. It follows that
if a2 > a1 + λ3 the equilibrium will be x∗1 = 0, x∗2 > 0
and x∗3 = 0. On the other hand, if λ2 < λ1 + λ3 the
equilibrium will instead be x∗1 > 0, x∗2 = 0 and x∗3 = 0.
When λ2 = λ1 + λ3 the equilibrium will depend on the
initial state, since there exists many possible choices of
x1 > 0, x2 > 0, x3 > 0 such that

a1 = u1 =
x1(x1 + x2 + x3)

(x1 + x3)(x1 + x2 + x3 + ξk)
,

a3 = u2 =
x3(x1 + x2 + x3)

(x1 + x3)(x1 + x2 + x3 + ξk)
.

Even if the control signal is not Lipschitz anymore, it
follows from the Maximum Theorem, see (Sundaram,
1996, Theorem 9.14), that u(x) is upper semi-continuos
and convex-valued, since the objective function in the
optimization problem (16) is a concave function in ν.
Hence existence of solutions to the dynamics (1)–(6)
together with the controller (16) can still be ensured,
while uniqueness is still an open problem. Note that, when
xi > 0, hi(x) is uniquely determined. Hence the proof of
Theorem 2 works for non-orthogonal phases as well.
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Fig. 5. How the traffic volumes evolves with time in the
simulation.

Corollary 1. The stability results stated in Theorem 2
holds for all control signals determined by (16) when P
is a feasible set of phases.

6. NUMERICAL SIMULATIONS

In this section we report numerical simulations of the
continuous-time dynamics given by (1)–(6) together with
the controller given by (16) for a small network with with
four intersections as shown in Fig. 4. For each intersection,
the phases are the same as in Fig. 1, where the position of
the 1-lane from Fig. 1 is marked by a circle, ◦, in Fig. 4.
In Fig. 5 it is shown how the traffic volume on each line
evolves with time, when all lanes start with the initial
traffic volume xi(0) = 0.1.

7. CONCLUSIONS

In this paper we have presented a feedback-based traffic
signal control policy that only requires information about
the traffic volume in order to stabilize network. We have
also showed that the proposed policy is maximally stabiliz-
ing, i.e., when any controller can stabilize the network, the
proposed one is able to stabilize as well. Currently pursued
research directions include a comparison with the back-
pressure controller in a micro simulator, the investigation
of finite storage capacities, and studying robustness of the
controller with respect to the traffic propagation model.
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Le, T., Kovács, P., Walton, N., Vu, H.L., Andrew, L.L.,
and Hoogendoorn, S.S. (2015). Decentralized signal con-
trol for urban road networks. Transportation Research
Part C: Emerging Technologies, 58, 431–450.

Lovisari, E., Como, G., and Savla, K. (2014). Stability of
monotone dynamical flow networks. In Proceedings of
53rd IEEE-CDC, 2384–2389.
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