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Abstract—The impact of ride-hailing vehicles on conges-
tion raises multiple concerns, particularly in areas where the
network space is constrained and the route infrastructure is
unevenly distributed among multi-modal users. Mainly, idle
ride-hailing vehicles pose multiple challenges because they
move across the network and contribute to production without
delivering any trips. One possible solution to halt the negative
effects of ride-hailing on traffic in a network is trip-sharing. To
incentivize users to share their rides, we provide in this work
a macroscopic dynamic framework for multi-modal networks
with on-demand ride-hailing services where pool passengers are
allowed on bus lanes. We then develop a pricing policy for solo
and pool trips to reduce overall multi-modal network delays.
Using a PI and a Model Predictive Control (MPC) framework,
we regulate the price difference between the two ride-hailing
alternatives with the objective to minimize the Passenger Hours
Travelled (PHT) for bus users but also for the users of other
concurrent transportation modes. The results show that the
ideal set point for the PI controller is heavily dependent on
the level of demand. The MPC framework, despite being more
complex from an implementation point of view, manages to
return lower total network delays.

I. INTRODUCTION

The ubiquitous character of ride-hailing is attributed to
the convenient and flexible door-to-door service it provides
to users at very affordable rates. However, its success and
freedom of operation were soon hindered by the attempts
of network regulators to curtail its influence on traffic and
to mitigate its impact on public transport usage. In fact, the
high number of idle vehicles improves ride-hailing’s level of
service, but it also increases the number of empty Vehicle
Kilometers Travelled (VKT) and congestion levels [1]. More-
over, ride-hailing is sometimes labeled as a public transport
competitor because it presents itself as a substitutionary
service [2]. This is particularly the case in areas where public
transit is deficient, unreliable, and not well-connected with
the main network hubs.

Ride-splitting is one possible solution with the potential to
counteract some of the negative externalities of ride-hailing.
By pooling passengers in a single trip, platforms are able
to reduce their total VKT [3] and their fleet size [4], while
guaranteeing the same service level. Because ride-splitting
is mostly efficient when the engagement level in pooling is
high [5], an incentive-based upfront fare discount is generally
offered to users if they consent to sharing their rides. Its main
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purpose is to compensate for the additional travel time that
sharing users may incur due to the pick-up and drop-off of
other users.

Proposing efficient and well-aimed regulatory strategies
requires, first and foremost, a proper understanding of the
structure and operation of ride-hailing markets. In [6], the
authors present an aggregate equilibrium modelling frame-
work for ride-hailing and highlight the difference in market
states between an efficient service where vehicles are mostly
idling and an inefficient service where idle vehicles are sent
far away to pick up passengers. A similar comprehensive
economic model is presented in [7] where service pricing
and fleet sizing are determined under profit and social welfare
maximization scenarios. In [8], the authors assessed the ag-
gregate equilibrium in ride-splitting markets, and in contrast
with [9], they integrated in their framework a macroscopic
traffic model to capture the impact of ride-hailing vehicles
on congestion. They then used the model they developed to
demonstrate the power of enforcing a platform commission
cap and a congestion toll to achieve sustainable equilibrium
solutions. Another regulatory approach is examined in [10],
where the authors propose an occupancy-dependent space
allocation strategy that improves multi-modal exploitation
of the limited network space. Again, they resorted to an
aggregate and static network equilibrium model to show
that allowing pool ride-hailing trips in bus lanes could
improve overall network delays. However, they also argued
that without any pricing strategies, this benefit could possibly
be reversed due to additional delays caused to bus users by
pool vehicles.

The contribution of this paper is twofold. First, we develop
a dynamic macroscopic model for multi-modal networks
with private vehicles, ride-hailing services, and buses. This
model is built according to an occupancy-dependent network
space allocation policy where private vehicles and solo ride-
hailing users travel in one portion of the network whereas
bus riders and pool ride-hailing users travel in the remaining
network portion. Second, we utilize this model to advance
a control framework for differential pricing of solo and
pool ride-hailing alternatives to steer the overall network
towards its system optimum. This suggested network regula-
tory policy therefore aims at minimizing the total Passenger
Hours Travelled (PHT) for multi-modal users by encouraging
or deterring ride-hailing users from pooling in bus lanes.
We investigate two different control strategies, one myopic
Proportional-Integral (PI) control strategy and one Model
Predictive Control (MPC) strategy. We also assess the control
strategies’ robustness with respect to abandonment, i.e., when
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Fig. 1. A schematic sketch of the suggested multi-modal space allocation
framework we assess in this paper

the waiting time for a ride-hailing trip becomes too long and
the users choose another travel mode instead.

The remainder of the paper is outlined as follows. In Sec-
tion [[I, we set forth the macroscopic occupancy-dependent
and modal-based space allocation strategy, and we accord-
ingly define the network dynamics. Next in Section [[II} we
elaborate on the control frameworks that we implement to
steer the network towards a system optimum through ride-
hailing service pricing, and we present the results in the
numerical example section, Section Finally, the paper
concludes with the main findings and proposes elements for
future research in Section [Vl

II. MODEL
A. Space allocation framework

Consider a multi-modal network with a set of available
mode alternatives M: private vehicles pv, buses b, or ride-
splitting services rs, such that M = {pv,b,rs}. We will
model the dynamics in discrete time with time step duration
7>0and k € K := {0,...,knax} denoting the time step
and K := K\ {kmax }. The modal and time-dependent demand
expressed in passengers per hour is exogenous, and is given
by @Q,(k) for j € M. Ride-hailing users have the choice
to travel solo or to share their rides with exactly one other
passenger for a fraction of their trips. We refer to these two
trips by s and p, respectively, and we denote by 3(k) € [0, 1]
the fraction of ride-hailing users opting for a solo trip at time
step k € K.

We split the network under consideration into a vehicle
network )V occupying a fraction o € [0,1] of the total
available space, and a bus network B spanning over a fraction
@ = 1 — «. In our model, private vehicles utilize the vehicle
network V and bus users utilize the bus network B at all
times. For ride-hailing trips, users opting for a solo ride travel
in the vehicle network V whereas users choosing to pool
travel in the high occupancy bus network B.

The total ride-hailing fleet size N > 0 is fixed, and its
vehicles at any point in time k£ € K can be in either of the
following states: empty, assigned to a solo trip and occupied
by one passenger, or assigned to a pool trip and occupied by
at least one passenger and a maximum of two passengers.
The number of ride-hailing vehicles in each state, which we
model as a continuous quantity, is n.(k), ns(k), and n,(k),

respectively, such that N = n.(k) + ns(k) + n,(k) for all
k € K. Similarly, we denote by n,, (k) the time-dependent
number of private vehicles and by n; the number of buses
here assumed to be fixed. Accordingly, the accumulation in
the vehicle network ny at any point in time k& € K is given
by ny (k) = nyy (k) + ne(k) + ng(k), and the accumulation
in the bus network ns at any point in time k € K is ng(k) =
n, (k) + np. Notice here that empty ride-hailing vehicles are
only allowed to travel in the vehicle network V.

B. Aggregate traffic model

In the following part, we elaborate on the macroscopic
traffic dynamic model proposed to identify the relationships
between network production P, network accumulation n, and
network speed v. The total production P : R>¢ — Ry
is a function of n such that P(n(k)) = n(k)v(n(k))
where v : R>9 — Ry>o is assumed to be decreasing
with the accumulation such that g—fL < 0. Accordingly, we
compute the production in V, Py : R>9g — R>p, and
the production in B, Pz : R>o — R>(, using the space
allocation factor « such that Py(an(k)) = aP(n(k)) and
Pg(an(k)) = aP(n(k)) respectively [11], [12]. Similarly,
the speed in the vehicle network vy, and in the bus network
vp are given by vy (an(k)) = v(n(k)) and vg(an(k)) =
v(n(k)). Rewriting the production functions in terms of
speed, we obtain that Py(ny(k)) = ny(k)vy(ny(k)) and
Pg(np(k)) = np(k)vs(np(k)). Furthermore, given that the
marginal impact of a bus and a pool vehicle on traffic in B is
not equivalent, we partition the production in the bus network
into pool vehicle production P, : R>g X R>0 — R>g and
bus production Py, : R>¢ X R>9 — R0, each dependent on
both values of n, and n;. Buses need to repetitively board
and alight passengers at stops, and we capture this action by
reducing vg with a factor r(n;), where 7 : R>¢ — (0,1] and
d‘% < 0. The running speed of the pool vehicles in 5 is given
by v, (ny(k),ns) = vg(ns(k))r(n,) and the operational
speed of buses in 5, including the time they spend at stops,
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where t; and 5 are the average dwell time of buses and
the spacing between stops, respectively. Therefore, pool
and bus production functions become P, (n,(k),ny) =
ny(k)vp (ny(k),ny) and Py(ny,(k),ny) = nyvy(ny(k), np)
respectively for all k € K.

C. System dynamics

Previously, we put forward an occupancy-dependent al-
location scheme and defined an aggregate traffic model for
the network under consideration. Accordingly, we proceed
with finding the state dynamics for the different modes under
consideration.

First, let Oy, (k) denote the number of private vehicles that
are completing their trips and leaving the network at time
step k. Assuming a constant average trip distance of va >
0 and a homogeneous mixture of private and ride-hailing
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The accumulation of private vehicles between any two time

steps is modelled with a discrete dynamic formulation as

Opyv

Ang,(k) =T — Opy(k)| ,VE €K, (1
where 6, > 0 is the average occupancy of a private vehicle.
Moreover, we let A denote the forward difference between
two consecutive time steps, i.e., An,, (k) = np,(k + 1) —
N (K).

The dynamics of the ride-splitting services are more
complex as they involve different types of vehicle categories
utilizing separate networks. Requests arrive to the platform
at every time step and are given the choice to pool or not
according to the prevailing conditions in every network. In
practice, this choice is dependent not only on the solo fare
F,(k) and pool fare F,(k), but also on the expected travel
time of every individual option. Let U,(k) and U, (k) denote
the disutilities for a solo or a pool trip, respectively, at
time step k, then their expressions are given by Us(k) =

~ A

Fulk) + wpry and Uplk) = Ey(b) + mooh oy
where k > 0 is the value of time, [, > 0 is the average
trip length for a solo trip, and lpA > 0 is the pool detour
distance that passengers incur in case they opt for pooling.
In this work, we consider that F,(k) is constant such that
F,(k) = F, for all k € K, F, being the solo trip fare set
by the ride-hailing platform. On the contrary, the expression
for ﬁ‘p is given by F, + ¢(k) where F, is the platform
static pool trip fare and ¢(k) € R is the control fare that
steers the system towards a predetermined objective that we
elaborate on in Section In accordance with the spatial
strategy proposed, solo passengers travel in network 1V with
a speed vy and pool passengers travel in B with a speed v,,.
For ease of future implementation, let u (k) and u, (k) be the
solo and pool trip disutilities if no intervention is expected,
then us(k) = Us(k) and u,(k) = Up(k) — ¢(k). Using a
binary logit model, the fraction of ride-hailing passengers
that opts for the solo option (k) out of the total ride-hailing
demand at k is given by

exp(—pus(k))
exp(—pus(k)) + exp (—pe(k)) exp(—pupy(k))
0)

Bk) =

where p > 0 is the model scale parameter and £(k) €
(0, +00) is our control variable. Once §(k2 is determined,
the prices can be computed as ¢(k) = w. It follows
that, if c¢(k) represents the total waiting requests at time
step k, then the number of requests opting for a solo trip
is ¢s(k) = B(k)e(k), and the number of those opting for a
pool trip is ¢,(k) = (1 — B(k))c(k). With respect to the
matching technology between empty ride-hailing vehicles
n. and waiting requests ¢, we adopt a bilateral meeting
function using a Cobb-Douglas formulation extended to a
time-dependent framework [13]. The matching rate between
vehicles and requests at time step k € K is therefore

approximated by

M) = aon (8% () + 36y (8))

where ag > 0, . > 0, and a. > 0 are the Cobb-
Douglas meeting function parameters. We note here that the
number of requests waiting to be matched with an empty
vehicle at time step k is equal to c,(k) + £c,(k) as only
half of the requests opting for pooling are picked up by
idling vehicles. If the matching and pooling decisions are
determined at the end of every time step, and the idle vehicle
dispatching occurs at the start of the subsequent time step,
then the change in the number of idling vehicles between
two consecutive time steps k and k + 1 is

ns(k) Pv(nv(k)) Pp(np(k),nb)

S T Ry A A
)

for all k € K. The first two elements of (2) represents the
inflow into the category of empty vehicles, i.e., the rate of
trip completion for solo and pool vehicles that we denote by
Os(k) and O (k) respectively. The former is dependent on
the production in V and the average trip distance of a solo
trip I, > 0. The latter is defined using the vehicle production
in the bus network P, but also the total pool trip distance
ls + 19 where [ > 0 is the pool driver detour. The third
element of (2) is the rate of vehicles flowing out of the empty
category n. to join the solo or pool vehicle categories n, and
ny. Therefore, the discretized dynamics for solo vehicles are

ns(k) Py(ny(k))
nv(k‘) Zs

Ang(k) =T {B(k)M(k) - ] Wk eK,

3)

and the discretized dynamics for pool vehicles are

P, (ny(k), nb)
I +15
The rate of vehicle-request matches that enter the solo
vehicle category n at time step k + 1 is 8(k)M (k) and the
matches that enter the pool vehicle category is (k)M (k)
where B(k) = 1 — (k). Analogously, the changes in the
number of ride-hailing customers in the queue with time are
given by c(k +1) = c(k) + [Qus (k) + (B(k) — 2) M (k)] -
A(k) for all k € K, where Qs(k) is the ride-hailing
demand at k and A(k) is the number of abandoning re-
quests due to long waiting times. Therefore, if the passenger
waiting tolerance is wmax > 0, then we estimate A(k) =
max (c(kj) — %2172:1 M(l;;)wmax,O , which represents the
number of passengers leaving the waiting queue. In our
framework, abandoning ride-hailing requests board the buses

instead.

Finally, given that the number of buses n;, in the network 3
is constant, the bus dynamics are therefore narrowed down
to tracking eassenger occupancy per bus o,. Therefore, the
discretized changes in 0, between two consecutive time steps
k and k + 1 are

An,(k) = T[ﬁ(k)M(k) - } VkeK. (4)

Bou(k) = | Qu(k) + Alk) - Py (np(k), mv)

; op(k) |, (5)
b



for all k € I, where [, is the average trip length by bus.
The inflow in (@) is the bus demand @ and the abandoning
ride-hailing passengers A. The last term in () represents
the outflow O, which is the passenger trip completion rate.
Note that all these elements are divided by n; to compute the
average occupancy per bus, which is assumed to be uniform
among all operating buses.

Figure[I]|provides a summary sketch of the space allocation
strategy put forward in this work as well as the dynamics
for the different transportation modes utilizing the network
infrastructure.

III. CONTROL STRATEGIES

Theoretically, the goal of allowing pool ride-hailing vehi-
cles in bus lanes is to improve the overall traffic conditions
in multi-modal networks without significantly impacting bus
flow. In the following section, we elaborate on the PI control
and MPC framework that we develop to achieve this goal.

A. PI control

The space allocation strategy we suggest interferes with
bus flow, and this interference must be contained within
acceptable levels to maintain a good public transport service
level. We achieve this objective by developing a PI controller
which goal is to minimize the error term, here given by
the difference between the target and actual bus speeds vy
and vy,(n,(k),ny), respectively. Therefore, if e(k) = (v, —
vy(np(k),np)), then the expression for the control variable
patkeKis

K, k—1 ~
d(k) = Kpe(k) + ) (k)

© E=max(k—(N.41),0)

where K, > 0 and K; > 0 are the constants for the
proportional and integral terms of the PI controller. Notice
that for the integral term, we keep track of the previous errors
for the last N, € IN time steps.

B. Model Predictive Control

Unlike the PI controller which exclusively focuses on
bus delays, the MPC framework minimizes delays for the
different network users, including private vehicles, solo
and pool ride-hailing users, and bus passengers. Conse-
quently, if the total Passenger Hours Travelled (PHT) by
multi-modal users at time step £ € K is PHT(k) =
TNpw (k)Opy + pop (k) + ng(k) + np(k)o,), the formulation
of the MPC framework is given by

minimize Y~ PHT(k)

keK
SUbjeCt to f(k) € [gmimgmax] Vke K
(k) =¢&(k—1) VkeK\{n-N,|neN}

(k) =&k =1)[ <o VEEK
. @, 6. @, 6

where &nin and &nax are the exogenous lower and upper
bounds for the control variable, and 0, € (1,2] is the average
occupancy of a pool trip. We constrain the control action to

Optimizer ~
R k+N .
MINMizey 1) ey Ny Z,:k PHT(i)

Gmin < E(k) < Emax
s.L.
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Fig. 2. Implementation of the MPC framework with abandonment

TABLE I
MACRO-SIMULATION PARAMETERS

Variable description Variable name  Value Unit
Trip length for private vehicles lpw 3.86 km
Trip length for solo rides ls 3.86 km
Trip length for buses Iy 5.4 km
Driver pool trip detour 4 2.7 km
Passenger pool trip detour lé 0.6 km
Private vehicle occupancy Opv 1.2 pax
Pool occupancy Op 1.5 pax
Scale parameter o 1 -
Value of time K 30 CHF/hr
Fare for solo trip Fy 5 CHF
Fare for pool trop Fy 4 CHF
Fleet size N 3500 veh
Number of buses ny 530 bus
Length of time step k T 6 S

only be updated every N, € IN time steps. Moreover, we
make sure that the difference between any two update steps
does not exceed the exogenous limit o.

In the following section, we elaborate on the MPC frame-
work using a numerical example. We furthermore compare
the multi-modal user delays for the no control, PI control,
and MPC implementations.

IV. NUMERICAL STUDY

For demonstration purposes, we consider a network with
a total production P(n) = Agn® + Bon? + Coyn, such that
Ay =5.74-10"%, By = —1.02-1073, and C; = 36 for n €
[0,58536]. The vehicle network V occupies a fraction o =
0.8 of the infrastructure space, and the remaining fraction is
allocated to the bus network B. This fraction « is crucial in
our framework because it yields an expression for both Py
and Pg. To be able to compute P, from Py, we capture the
marginal influence of buses on other vehicles by reducing the
bus network speed using the function r(n;) = e~6-510" v,
Finally, P, is computed by setting the spacing between bus
stations 5 to 0.8 km and the boarding and alighting time
of passengers t4 to 30 s. The matching function takes the
values 0.025, 0.93, and 0.98 for ag, a., and . respectively.
The remaining constant parameters used in our macroscopic
simulation are listed in Table [

The implementation of the PI controller requires a proper
selection of the speed set point v;. For this reason, we
use the equilibrium steady-state model with fixed demand
presented in [10] and combine it with a binary logit mode
choice to plot in Figure |3| the optimal operational set points.
In our framework, the optimal set point is the bus speed
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for which the multi-modal user delay is minimized. When
Qpv = 84000 pax/hr and @, = 15000 pax/hr, Figure B[2)]
shows that the optimal bus speed set point increases with the
bus demand, indicating that our allocation strategy becomes
more critical when the bus demand is high. The same logic
applies in Figure B[b)| for @, = 35000 pax/hr and variable
private vehicle demands, where we observe that the optimal
operational bus speed set point decreases with private vehicle
demand. This indicates that a lower operational point for
buses is acceptable in network 3 when the private vehicle
demand is very high in network V. The previous analysis
is performed to provide intuition on the choice of the bus
speed set point for the PI controller in the dynamic multi-
modal macro-simulation.

Next, we simulate the network dynamics using the demand
profiles displayed in Figure[[a)| for private vehicles and ride-
hailing users, and in Figured[b)]for bus users. The simulation
spans over a duration of 6 hours, reproducing the evening
peak in between two off-peak periods. We start with the
case where wp,x 1S set to infinity, meaning that solo or pool
ride-hailing users do not abandon the system to travel by bus.
Table [II|shows the total user delays for scenarios where (i) all
ride-hailing users travel in V), (ii) all ride-hailing users travel
in B, (iii) solo users travel in V' and pool users travel in V
with no intervention, (iv) a PI control implementation, and
(v) an MPC implementation. Moreover, the set point for the
PI controller in scenario (iv) is chosen by taking the average
of the dynamic bus demand in Figure and selecting the
optimal set point for this value of average bus demand from
the graph in Figure [B(a)] With respect to the MPC parameter
settings, we fix {pin and Epax to 5 10~° and 30 respectively,
N, to 180 time steps, and o to 7. While scenario (i) is
infeasible and scenario (ii) yields relatively high delays, the
proposed allocation strategy has the potential to reduce multi-
modal delays even without any regulatory price intervention.
The PI control implementation performs worse than the no
control scenario, and this is mainly attributed to the choice
of set points. In fact, the PI controller only accounts for bus
speed, and even with a proper choice of ¥p, scenario (iv)
does not guarantee low PHT values because the total multi-
modal user delay is also dependent on the private vehicle
and ride-hailing demand. Finally, the MPC returns solutions
with the lowest delays, mainly because its objective function
considers all mode users.

When accounting for ride-hailing requests’ impatience
within our framework, requests are expected to abandon
the platform. Accordingly, we set wp.x = 15 min and
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Fig. 4. Time-dependent multi-modal demand profile

TABLE II
PHT FOR THE SCENARIOS WITHOUT AND WITH ABANDONMENT

Controller PHT PHT Abandonment
[pax.km/hr] | [pax.km/hr]
All Qrs in YV Infeasible Infeasible Infeasible
All Qs in B 198473 202057 14133
No control 193019 194184 6110
PI 195141 196805 8242
MPC 190601 192480 7998

report the results for the same scenarios in Table The
results are consistent with what we observed with the macro-
simulation not taking abandonment into account, with the
MPC scenario yielding the lowest delays. We note here that
the MPC implementation is not straightforward for scenarios
with abandonment. Therefore, to overcome this complexity,
we follow the approach presented in Figure [2] where we
include abandonment in the plant dynamics but exclude it
from the MPC framework. The prediction horizon for the
optimizer is set to N = 3600 time steps, and we update our
state variable according to the actual plant dynamics using
the output control variables every T = 600 time steps.

The state and control variables for the PI and MPC im-
plementations with abandonment are presented in Figures [3]
and [§ respectively. Clearly, as the PI and the MPC achieve
separate objectives, the variations of the state variables are
not the same. For a set point ¥, equal to 14.5 km/hr
(Figure [5[d)), when the bus network capacity allows it, the
PI controller provides a higher pool discount ¢ as shown in
Figure 3[g)] therefore sending more pool vehicles to the bus
network. This is concluded by mainly comparing the number
of solo and pool vehicles in Figure [B[a)] and Figure [3[b)]
respectively. We mention here that when the intergral gain
value K; is set to 30 and N, to 500, the controller oscillates
more but is capable of fluctuating around the set point in
Figure [5[d)] compared to the case of P control only with
K; = 0, where v, does not fully get to v,. Moving to
the MPC framework, it is clear from Figures and
that pooling is incentivized during the peak period, and
this is explained by the negative ¢ values in Figure
offered to pool passengers to encourage them to travel in
bus lanes. Note that the control variable ¢ sometimes takes
positive values, indicating that pool ride-hailing users have
to pay extra to utilize the bus lanes, as conditions in the bus
network B are better than the vehicle network ).

V. CONCLUSION

In this work, we provide a macroscopic dynamic model
for a multi-modal space allocation strategy that allows pool
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ride-hailing users in bus lanes. We then utilize the model to
develop two control frameworks to guarantee the improve-
ment of total network delays, and to avoid the amplification
of bus users’ travel time. First, the PI controller aims at
incentivizing or discouraging pooling in bus lanes by setting
a pricing scheme that minimizes the difference between the
target and actual bus speeds. We show that this implementa-
tion is highly demand-dependent, and the choice of set points
does not guarantee good solutions for all multi-modal users.
Second, the MPC framework sets the price for pooling in bus
lanes with the aim of minimizing the total PHT of all mode
users in the network. Whether we account for abandonment
in our framework or not, the MPC has the potential to always
result in a pricing scheme that is optimal on the network
level. Future work will mainly consider the possibility of
adding a new ride-hailing choice alternative by giving pool
users the option to either travel in the vehicle or bus network
with the aim of determining the price discrimination between
the different alternatives accordingly.
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