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Abstract— With the growing popularity of ride-hailing ser-
vices and the desire to operate those services efficiently, ride-
hailing companies need to ensure a sufficiently large fleet size
and an appropriate rebalancing of empty vehicles. Due to
the complexity of city traffic dynamics, macroscopic modeling
approaches are often required. In this work, we present
a macroscopic compartment model for ride-hailing services
and characterize its equilibrium properties. If the service is
only operating in one region, we provide both sufficient and
necessary conditions for the system to converge to a unique
equilibrium. If the service is operating over a couple of regions,
we provide the necessary conditions for the request queues to
stay bounded. When operating over more than one region, there
is a need for a rebalancing controller for sending idling vehicles
to another region. Hence, we present a Model Predictive Control
(MPC) approach to solve the rebalancing problem and compare
its performance with some simpler myopic controllers.

I. INTRODUCTION

Ride-hailing services, i.e., services where users can re-
quest a ride through different smartphone applications, have
increased in popularity over the previous years. For those
services to operate efficiently and provide a good user
experience, the availability of ride-hailing vehicles is crucial.
Hence there is a need for operators of ride-hailing services to
ensure that the fleet size is large enough to satisfy the demand
and that idling ride-hailing vehicles are positioned in areas
where the demand is high to ensure efficient matching with
the waiting passengers.

The rebalancing problem has previously been extensively
studied on the microscopic level. For this level of granu-
larity, control solutions such as MPC [1], [2] and coverage
control [3] have been proposed.

However, in an urban traffic environment where most ride-
hailing services operate, the traffic dynamics is very complex.
Because of the complexity, macroscopic models that capture
the main characteristics of the traffic dynamic have become
popular, both due to their ability to capture some of the
most relevant congestion effects [4], [5], and also allowing
for more tractable analysis of urban traffic control problems
such as routing [6] and perimeter control [7]. Macroscopic
urban traffic models have also been utilized for modeling and
control of the dispatching of taxi services [8]. While there are
similarities between the model proposed in [8] and the model
proposed in this paper, we in this work focus our analysis on
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equilibrium properties and theoretical stability guarantees. In
particular, we will investigate the implications of having a
constant fleet size, which imposes further limitations on the
set of feasible ride-hailing demands.

In this paper, we will introduce and analyze a macroscopic
model for the rebalancing problem. The model we are study-
ing fits into the broad class of compartmental models, which
have gained attention in modeling different dynamical sys-
tems such as epidemics [9] and chemical reactions [10], [11].
Unlike most control problems for compartmental models, the
controller’s task in our model is to move a finite and constant
mass between the separate compartments to improve the
overall throughput of passengers. The rebalancing problem
ultimately is about allocating a finite set of resources to
serve queues, in our case, the waiting passengers. However,
different from similar problems in, e.g., communication
networks [12] and traffic networks with signalized junc-
tions [13], [14], where the service allocation to the queues
can be decided upon instantaneously, the rebalancing of
empty ride-hailing vehicles is a slower process since the
vehicles need to travel in the traffic network and are hence
affected by the traffic dynamics. While ride-hailing vehicles
are affected by traffic dynamics, we will in this work assume
that the number of ride-hailing vehicles is relatively small
compared to the overall number of vehicles in the system,
and hence will have a negligible impact on the overall traffic
dynamics themselves.

Apart from introducing and analyzing the properties of
the model, we also propose a model predictive control
(MPC) solution to solve the rebalancing problem. While the
dynamical model itself does not yield convex constraints, we
propose a convex relaxation of the discretized dynamics by
transforming non-linear equality constraints into inequality
constraints. Similar techniques have previously been utilized
to make convex relaxations for optimal control of non-linear
compartmental models for highway traffic [15].

The paper is outlined as follows. In the following section,
Section II, we introduce the fluid model for one region and
investigate its stability properties. We then, in Section III,
extend the model to cover two regions, characterize the
equilibrium properties of the model, and provide necessary
conditions on the ride-hailing demands for the system to be
stable. In Section IV, we present an MPC solution for the
re-balancing problem, and in Section V, we illustrate the
performance of MPC through numerical examples and also
compare its performance to some simpler myopic controllers.
The paper is concluded with some suggested directions for
future research.



II. SINGLE REGION DYNAMICS

For a single region, we consider a fluid model with three
continuous non-negative states: the number of idling ride-
hailing vehicles nI , the number of occupied ride-hailing
vehicles nO, and the user request queue q. Occupied vehicles
become idling with a possible time-varying trip completion
rate γ > 0 which represents the number of completed trips
per time unit, and an idling vehicle becomes occupied with a
matching rate given by a matching function f(q, nI) that is
both dependent on the size of the request queue and the
availability of idling vehicles. Throughout the paper, we
will make the following assumptions about the matching
function:

Assumption 1: The matching function is suppose to be
such that f(0, nI) = 0 for all nI ≥ 0 and f(q, 0) = 0
for all q ≥ 0.

The assumption ensures that the number of empty vehicles
and the request queue can never become non-negative.

Example 1: Examples of matching functions are vari-
ants of the Cobb-Douglas meeting function f(q, nI) =
a0(n

I)αeqαc , where a0 > 0, αe > 0, and αc > 0 are
parameters [16], [17]. For this kind of matching function,
the frequency of which matches occur increases both with
the queue length and the number of idle vehicles. Another
example is f(q, nI) = β(1 − exp(−q))nI with β > 0. In
this case, the number of matches saturates with queue length,
such that it will at maximum, be βnI .

Moreover, we will, throughout the paper, assume that the
fleet size of the ride-hailing vehicles will be relatively small
compared to the total number of vehicles in the system:

Assumption 2: The number of ride-sharing vehicles is
relatively small compared to the total number of vehicles
in each region and will hence have a negligible effect on the
trip completion rates.

The assumption above implies that the trip completion rate
will be an exogenous variable in our model.

To complete our model, we introduce the exogenous,
possibly time-varying, request rate r ≥ 0 of users joining
the request queue. The dynamics for one region can then be
stated as:

ṅI = γ(t)nO − f(q, nI) , (1)

ṅO = f(q, nI)− γ(t)nO , (2)

q̇ = r(t)− f(q, nI) . (3)

Under the assumption that the system has an equilibrium
point, the following theorem shows that all trajectories will
converge to this equilibrium.

Theorem 1: Consider the system (1)–(3). Assume that the
matching function is strictly increasing in both the request
queue lengths and the number of idling vehicles, i.e., ∂f

∂q > 0

and ∂f
∂nI > 0. If the request rate r and trip completion rate γ

is constant and such that nO∗ = r
γ < n(0) and there exists

a q∗ such that r = f(q∗, nO∗), then for every initial state
q(0) ≥ 0, n(0) > 0 and 0 ≤ nO(0) ≤ n(0) it holds that
limt→+∞(nO(t), nI(t), q(t)) = (nO∗, n(0)− nO∗, q∗).

Proof Since the total number of ride-hailing vehicles is
constant, it holds that nI = n(0)−nO the system dynamics
can equivalently be expressed as

ṅO = f(q, n(0)− nO)− γ(t)nO := gnO (q, nO) , (4)

q̇ = r(t)− f(q, n(0)− nO) := gq(q, n
O) . (5)

Let (q∗(t), nO∗(t)) denote the solution to (4)–(5) with
(q∗(0), nO∗(0)) = (q∗, nO∗), i.e., the trajectory that will
stay at the equilibrium for all t ≥ 0. Let (q(t), nO∗(t))
denote any solution to the system (4)–(5). Introduce the
Lyapunov candidate V (t) = |q(t) − q∗(t)| + |nO(t) −
nO∗(t)|. Then it holds that d

dtV (t) = sign(q(t) − q∗(t)) ·
(gq(q(t), n

O(t))−gq(q
∗(t), nO∗(t)))+sign(nO(t)−nO∗(t))·

(gnO (q(t), nO(t))−gnO (q∗(t), nO∗(t))). Now, since ∂gnO

∂q >

0 and ∂gq
∂nO > 0, and also ∂(gnO+gq)

∂q = 0 and ∂(gnO+gq)

∂nI < 0,
Lemma 1 in [18] can be applied to guarantee that d

dtV (t) < 0
apart from when q(t) = q∗(t) and nO∗(t) = nO∗(t), which
proves the theorem.

While we in this section have analyzed the dynamics for
one region, we will extend the model to two regions in
the next section and introduce the need for a rebalancing
controller.

III. TWO REGION DYNAMIC WITH REBALACING

When extending our model to two regions, we need to
introduce states for both the trips within and between the
regions. We will refer to the regions as Region 1 and
Region 2 and let q1,1, q1,2, q2,1, q2,2 denote the different
request queues, where, e.g., q1,2 are the users that want to
travel between Region 1 and Region 2. In the same manner,
we introduce the states nO

1,1, n
O
1,2, n

O
2,1, n

O
2,2 for the occupied

vehicles. Moreover, we let nI
1, n

I
2 denote the number of idling

vehicles in each region. We also allow the trip completion
rates γ1, γ2 to be different for the different regions and the
matching functions f1,1, f1,2, f2,1, f2,2 to be different for the
different queues, all satisfying Assumption 1.

To rebalance the idling vehicles between the two regions,
we introduce the control actions u1,2, u2,1 ∈ [0, 1] that tells
how large a fraction of the idling vehicles that should go from
one region to another. A graphical overview of the whole
problem setting is shown in Figure 1.

The whole dynamical system can now be described as:

ṅI
1 =γ1(t)n

O
1,1 + γ2(t)n

I
2u2,1 − γ1(t)n

I
1u1,2

− f1,1(q1,1, n
I
1)− f1,2(q1,2, n

I
1) , (6)

ṅI
2 =γ2(t)n

O
2,2 + γ1(t)n

I
1u1,2 − γ2(t)n

I
2u2,1

− f2,2(q2,2, n
I
2)− f2,1(q2,1, n

I
2) , (7)

ṅO
1,1 =f1,1(q1,1, n

I
1) + γ2(t)n

O
2,1 − γ1(t)n

O
1,1 , (8)

ṅO
1,2 =f1,2(q1,2, n

I
1)− γ1(t)n

O
1,2 , (9)

ṅO
2,1 =f2,1(q2,1, n

I
2)− γ2(t)n

O
2,1 , (10)

ṅO
2,2 =f2,2(q2,2, n

I
2) + γ1(t)n

O
1,2 − γ2(t)n

O
2,2 , (11)
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Fig. 1. A schematic sketch of the rebalancing problem studied in this
paper. The area is divided into two regions, where Region 1 is the central
region and Region 2 is the suburban region. Each region has its own trip
completion rate, γ1 and γ2, respectively. In each region, users queue up
for service, either for a trip within the region or a trip to the other region,
where q1,1 and q2,2 denotes demands within each region, while q1,2 and
q2,1 denotes trips from region 1 to region 2 and vice versa. The controller’s,
u1,2 and u2,1, task is to send a fraction of empty ride-hailing vehicles from
one region to another.

q̇1,1 =r1,1(t)− f1,1(q1,1, n
I
1) , (12)

q̇1,2 =r1,2(t)− f1,2(q1,2, n
I
1) , (13)

q̇2,1 =r2,1(t)− f2,1(q2,1, n
I
2) , (14)

q̇2,2 =r2,2(t)− f2,2(q2,2, n
I
2) . (15)

In the dynamics above (6) and (7) describes the amount of
idle ride-hailing vehicles in each region. Looking specifically
at Region 1, the amount increases when trips within the
region finish, which happens with a rate γ1(t)n

O
1,1 and

decreases when idle vehicles get occupied, both for trips
within the region f1,1(q1,1, n

I
1) and trips to the neighboring

region f1,2(q1,2, n
I
1). Mover, idle vehicles can be sent from

Region 2 to Region 1 through the term γ2(t)n
I
2u2,1 which

will increase the number of idle vehicles in Region 1, or in
the opposite direction, γ1(t)nI

1u1,2, which will decrease the
number of vehicles in Region 1.

Equations (8)–(11) describe the dynamics of the occupied
vehicles. The number of occupied vehicles increases with
the matching and decreases when a trip is completed. It
should be noted that for a trip between regions, e.g., from
Region 1 to Region 2, once the vehicle reaches Region 2,
the trip becomes equivalent to a Region 2 trip. In other
words, a vehicle can not go from the states/compartments
nO
1,2 or nO

2,1 to an idle state without first passing through the
states/compartments nO

1,1 or nO
2,2.

The following proposition is a direct consequence of
standard equilibrium analysis:

Proposition 1: Suppose that the request rates
r1,1, r1,2, r2,1, r2,2 and trip completion factors γ1, γ2 are
constant. Then, if the system (6)–(15) has an equilibrium,
the number of occupied vehicles at the equilibrium is given

by

nO∗
1,2 =

r1,2
γ1

, nO∗
2,1 =

r2,1
γ2

,

nO∗
1,1 =

r1,1 + r2,1
γ1

, nO∗
2,2 =

r2,2 + r1,2
γ2

. (16)

Moreover, the amount of idle vehicles at the equilibrium
satisfies[

−γ1u1,2 γ2u2,1

1 1

] [
nI∗

1

nI∗
2

]
=[
r1,2 − r2,1

n(0)− nO∗
1,2 + nO∗

2,1 + nO∗
1,1 + nO∗

2,2

]
, (17)

and the request queues at equilibrium will be such that r1,1 =
f1,1(q

∗
1,1, n

I∗

1 ), r1,2 = f1,2(q
∗
1,2, n

I∗

1 ), r2,1 = f2,1(q
∗
2,1, n

I∗

2 ),
and r2,2 = f2,2(q

∗
2,2, n

I∗

2 ).

Remark 1: It should be noted that there are several
possible values of u1,2, u2,1 satisfying (17). If we sup-
pose that r1,2 > r2,1, then given that r1,2−r2,1

nI∗
2 γ2

≤ 1,
one possible choice of control action that has an equi-
librium is (ũ1,2, ũ2,1) = (0,

r1,2−r2,1
nI∗
2 γ2

) but another choice

is (ũ1,2, ũ2,1) = (k,
r1,2−r2,1+kγ1

nI∗
2 γ2

), where 0 ≤ k ≤

min(1,
nI∗
2 γ2+r2,1−r1,2

γ1
). In the latter case, there is, however,

an unnecessary rebalancing of empty ride-hailing vehicles in
both directions.

From (16) in the proposition, we can see that a slower trip
completion rate, i.e., smaller values of γ will lead to more
occupied vehicles at equilibrium. Moreover, as expected, as
long as the matching function can provide a sufficiently large
matching rate to meet the demand, the choice of matching
functions will not influence the equilibrium.

From Proposition 1, it follows that a necessary condition
for the existence of a non-negative equilibrium point is that
nO∗
1,2 +nO∗

2,1 +nO∗
1,1 +nO∗

2,2 < n(0), which can equivalently be
expressed as

r1,2 + r2,1 + r1,1
γ1

+
r2,2 + r1,2 + r2,1

γ2
< n(0) . (18)

However, since 0 ≤ u1,2, u2,1 ≤ 1, (17) also provides
another necessary condition for the existence of a non-
negative equilibrium point, namely

r1,2 − r2,1
γ2nI∗

2

≤ 1 , if r1,2 ≥ r2,1 , (19)

r2,1 − r1,2
γ1nI∗

1

≤ 1 , if r2,1 > r1,2 . (20)

By combining (19) and (20) with (18), we obtain the fol-
lowing necessary conditions for a non-negative equilibrium
point:
r1,1 + r1,2 + r2,1

γ1
+

2r1,2 + r2,2
γ2

≤ n(0) , if r1,2 ≥ r2,1 ,

(21)
and
r1,1 + 2r2,1

γ1
+

r1,2 + r2,1 + r2,2
γ2

≤ n(0) , if r1,2 < r2,1 .

(22)



We will next show that the conditions (21) and (22) are
necessary for the request queues to stay bounded.

Proposition 2: Suppose that the request rates
r1,1, r1,2, r2,1, r2,2 and trip completion factors γ1, γ2 are
constant. Then the conditions (21) and (22) are necessary for
the system (6)–(15) have bounded request queues, i.e., the
conditions have to be satisfied for the existence of a constant
D > 0 such that q1,1(t) + q1,2(t) + q2,1(t) + q2,2(t) < D
for all t ≥ 0.
Proof We start by proving the second case, i.e., when
r1,2 < r2,1, and will then see that the second case follows
analogously. Assume that

r1,1 + 2r2,1
γ1

+
r1,2 + r2,1 + r2,2

γ2
> n(0) . (23)

Next, assume without loss of generality that all queues are
initiated empty and observe that

A :=
q1,1(t) + 2q2,1(t)

γ1
+

q1,2(t) + q2,1(t) + q2,1(t)

γ2
=

1

γ1

∫ t

0

(
r1,1 + 2r1,2 − f1,1(q1,1(s), n

I
1(s))

−2f2,1(q2,1(s), n
I
2(s)

)
ds

+
1

γ2

∫ t

0

(
r1,2 + r2,1 + r2,2 − f1,2(q1,2(s), n

I
1(s))

−f2,1(q2,1(s), n
I
2(s)− f2,2(q2,2(s), n

I
2(s)

)
ds .

Due to (23) it holds that

A ≥ (n(0) + ϵ)t

−
∫ t

0

(
f1,1 + 2f2,1

γ1
+

f1,2 + f2,1 + f2,2
γ2

)
ds (24)

where ϵ > 0, and we have dropped the dependencies of some
functions for clarity. Now, by utilizing (9), (10), and (11)
we get that

f1,2 + f2,1 + f2,2
γ2

= nO
1,2+nO

2,2+
ṅO
1,2 + ṅO

2,1 + ṅO
2,2

γ2
, (25)

and by utilizing (7), (8),(10) and (11) we get that

f1,1 + 2f2,1
γ1

= nO
1,1 + nO

2,1

+
γ1n

I
1u1,2 − γ2n

I
2u2,1

γ1
+

ṅO
1,1 + ṅO

1,2 − ṅI
1 − ṅO

2,2

γ1

≤ nO
1,1 + nO

2,1 + nI
1 +

ṅO
1,1 + ṅO

1,2 − ṅI
1 − ṅO

2,2

γ1
, (26)

where the last inequality follows from the fact that
u1,2, u2,1 ∈ [0, 1]. By inserting (25) and (26) into (24),
we obtain A ≥ (n(0) + ϵ)t −

∫ t

0
(nO

1,1(s) + nO
1,2(s) +

nO
2,1(s) + nO

2,2(s) + nI
1(s))ds −

∫ t

0

( ṅO
1,1+ṅO

1,2−ṅI
1−ṅO

2,2

γ1
+

ṅO
1,2+ṅO

2,1+ṅO
2,2

γ2

)
ds. The last integral term has to be bounded

for all t ≥ 0, since the states for the ride-hailing fleet
are bounded between 0 and n(0). Moreover,

∫ t

0
(nO

1,1(s) +
nO
1,2(s) + nO

2,1(s) + nO
2,2(s) + nI

1(s))ds ≤ n(0)t and hence
A ≥ ϵt → +∞ when t → +∞, which combined with

the fact that all the queues are non-negative, proves the
statement.

Remark 2: In the case of a single region, as analyzed in
Section II, the necessary condition above simplifies to r

γ ≤
n(0) which is arbitrarily close to the sufficient condition in
Theorem 1. Hence the condition is both a necessary and
sufficient condition for the single region dynamics.

While we in this section only have provided necessary
conditions for the request queues to stay bounded, we
will later numerically investigate if there exists rebalancing
controllers that can keep the request queues bounded, i.e., if
the necessary conditions could be sufficient as well. Before
doing so, we will in the next section introduce a convex
model predictive controller.

IV. CONVEX RELAXATION OF THE DISCRETIZED MPC
PROBLEM

In this section, we will design a model predictive control
(MPC) solution that will determine the rebalancing control
actions with the objective to minimize the total request queue
length over time.

When implementing the MPC, we discretize the dynamics
by step size h > 0 and let the index k ∈ K := {0, . . . , kmax}
denote the kth time step, i.e., at time kh. We will be
using the same state-space as our continuous time model
in (6)–(15), but to simplify the notation, we introduce
the vectors q(k) = [q1,1(k), q1,2(k), q2,1(k), q2,2(k)],
f(k) = [f1,1(qk), f1,2(k), f2,1(k), f2,2(k)],
r(k) = [r1,1(k), r1,2(k), r2,1(k), r2,2(k)], nO(k) =
[nO

1,1(k), n
O
1,2(k), n

O
2,1(k), n

O
2,2(k)], n

I(k) = [nI
1(k), n

I
2(k)],

and ũ(k) = [ũ1,2(k), ũ2,1(k)], where ũ corresponds to the
number of vehicles rebalanced, i.e., 0 ≤ ũ1,2(k) ≤ nI

1(k)
and 0 ≤ ũ2,1(k) ≤ nI

2(k), instead of the fraction previously
used as the control input. Moreover, we will introduce
additional variables that will model the actual matching
rate, α(k) = [α1,1(k), α1,2(k), α2,1(k), α2,2(k)], which we
will allow to be lower than the matching rates given by
f(k). The reason for introducing α(k) is two-fold. First, by
introducing them, we will later see how the MPC problem
becomes a convex problem. Second, by naively discretizing
the system (6)–(15), the introduction of α prevents some of
the states from going below zero. However, as we will see
in the numerical studies in the next section, for the problem
we are studying, α(k) will equal the true matching rates.

With the vector α(k), the optimal control problem in
discrete time can be formulated as

minimize
∑
k∈K

q1,1(k) + q1,2(k) + q2,1(k) + q2,2(k)

subject to

q(k + 1) =q(k) + h(r(k)− α(k)) , ∀k ∈ K̄ , (27)

nO(k + 1) =nO(k) + hα(k)

− h


γ1 0 γ2 0
0 γ1 0 0
0 0 γ2 0
0 γ1 0 γ2

nO(k) ,∀k ∈ K̄ , (28)



nI(k + 1) =nI(k) + h

[
γ1 0 0 0
0 0 0 γ2

]
nO(k)

− h

[
1 1 0 0
0 0 1 1

]
α(k)

+ h

[
−γ1 γ2
γ1 −γ2

]
ũ(k) , ∀k ∈ K̄ , (29)

0 ≤ ũ1,2(k) ≤ nI
1(k) , ∀k ∈ K , (30)

0 ≤ ũ2,1(k) ≤ nI
2(k) , ∀k ∈ K , (31)

nI(k) ≥0 , nO(k) ≥ 0 , nI(k) ≥ 0 ,∀k ∈ K , (32)
0 ≤ α(k) ≤ f(k) , ∀k ∈ K , (33)

where K̄ := K\{kmax} and the inequalities in (32) and (33)
applies element-wise.

Proposition 3: If the matching functions f(k) are con-
cave, then the optimal rebalancing problem is convex.
Proof The objective function is linear. All the equality
constraints, i.e., (27), (28), (29), are affine in the decision
variables. The inequality constraints (30), (31) are all con-
cave, and hence the problem is convex.

V. NUMERICAL EXAMPLE

To demonstrate the dynamics and investigate the con-
troller, we study the two regions setting with γ1 = 3
trips/hour, γ2 = 2 trips/hour. We start the simulations with
no occupied vehicles, and let nI

1(0) = 170 vehicles and
nI
2(0) = 50 vehicles. Moreover, we let each of the four

request queues be initiated with 10 users, i.e., q1,1(0) =
q1,2(0) = q2,1(0) = q2,2 = 10. We run the simulations with
a step size h = 0.01 for 800 steps, i.e., the total simulation
horizon is 8 hours. For simplicity, we let the matching
functions for all queues be fi,j(qi,j , n

I
i ) =

√
qi,jnI

i .
In our first simulation, we let the request rates be r1,1 =

30, r1,2 = 10, r2,1 = 50, and r2,2 = 10 requests/hour, which
we refer to as the low demand scenario. For those requests
rates, the necessary condition in Proposition 2 is clearly
satisfied, since r1,1+2r2,1

γ1
+

r1,2+r2,1+r2,2
γ2

≈ 78 < n(0) =
220.

The trajectories for this simulation are shown in Figure 2.
First, we observe that the α values in the relaxations are so
close to the matching rates that we can conclude that the
convex relaxation is tight in this setting. As expected, the
queues stay stable. More interestingly, the controller sends
empty vehicles in both directions. A question for further
research is if it is possible to rescale the control action such
that this behavior is avoided while still keeping the same
overall performance.

To further test the MPC’s ability when the necessary
condition is barely satisfied, we increase the demands to
be r1,1 = 78, r1,2 = 26, r2,1 = 130, and r2,2 = 26,
which we refer to as the high demand scenario. Now,
r1,1+2r2,1

γ1
+

r1,2+r2,1+r2,2
γ2

≈ 204 < n(0) = 220.
To better capture the convergence of the queues, we now

let the simulation run for 2000 steps with h = 0.1 instead,
although this horizon is superficial from a practical view-
point. Figure 3 shows the trajectories for this demand profile.
Since the demands barely satisfy the necessary conditions, it
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Fig. 2. The trajectories with the MPC for the low demand scenario. For
the occupied vehicles, the dotted lines represent the equilibrium.
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Fig. 3. The trajectories with the MPC for the high demand scenario. For
the occupied vehicles, the dotted lines represent the equilibrium. For legend
description, see Fig. 2.

takes longer for the system to converge, but it still converges.
Therefore, we conjecture that the necessary conditions may
also be sufficient when the control signal is optimal, but
further theoretical investigations are needed in this regard.

For comparison, we also do simulations with two myopic
feedback controllers. The first one rebalances the vehicles in
proportion to the difference in the aggregate queue lengths
in each region, such that

uP
1,2 =

{
q2−q1
q2

if q2 ≥ q1

0 otherwise
, uP

2,1 =

{
q1−q2
q1

if q1 > q2

0 otherwise,

where q1 = q1,1+q1,2 and q2 = q2,1+q2,2. We also try with
a bang-bang-like controller,

uBB
1,2 =

{
1 if q2 > q1

0 otherwise
and uBB

2,1 =

{
1 if q1 > q2

0 otherwise.

The trajectories for both myopic controllers in the low-
demand scenario are shown in Figure 4 and for the high-
demand scenario in Figure 5.
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Fig. 4. The trajectories with the proportional controller (solid) and the bang-
bang controller (dashed) for the low-demand scenario. For the occupied
vehicles, the dotted lines represent the equilibrium. For legend description,
see Fig. 2.
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Fig. 5. The trajectories with the proportional controller (solid) and the bang-
bang controller (dashed) for the high-demand scenario. For the occupied
vehicles, the dotted lines represent the equilibrium. For legend description,
see Fig. 2.

A summary of all controllers’ performances is shown in
Table I, where q = q1 + q2. The results show that the bang
bang controller performs almost as well as the MPC for both
the low-demand and high-demand scenarios. However, the
MPC yields a smoother rebalancing strategy.

VI. CONCLUSION

This paper presents a macroscopic model for ride-hailing
services with a fixed fleet size that allows for rebalancing
empty vehicles between different regions. We analyzed the
equilibrium properties and provided necessary conditions on
the ride-hailing demand levels for the system to stay stable.
Moreover, we showed how the rebalancing control action
could be determined through a convex MPC problem.

In the future, we plan to analytically study the stability
properties of the different controllers proposed in this paper.
Moreover, we plan to integrate the current framework in

TABLE I
COMPARISON OF THE DIFFERENT CONTROLLER’S PERFORMANCE

Scenario Controller Bounded q h
T

∑T
k=0 q(k)

Low-demand MPC Yes 0.41
Low-demand uP Yes 0.42
Low-demand uBB Yes 0.43
High-demand MPC Yes 101.51
High-demand uP Yes1 121.99
High-demand uBB Yes1 101.54

1 Convergence observed when extending the simulation to 10000 time
steps

a hierarchical framework, where at the upper level, i.e.,
regional level, rebalancing is done with a macroscopic ap-
proach, while on the lower level, each vehicle is controlled
individually.
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