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The Strong Integral Input-to-State Stability Property in
Dynamical Flow Networks

Gustav Nilsson and Samuel Coogan

Abstract—Dynamical flow networks serve as macroscopic
models for, e.g., transportation networks, queuing networks,
and distribution networks. While the flow dynamics in such
networks follow the conservation of mass on the links, the outflow
from each link is often non-linear due to, e.g., flow capacity
constraints and simultaneous service rate constraints. Such non-
linear constraints imply a limit on the magnitude of exogenous
inflow that is able to be accommodated by the network before it
becomes overloaded and its state trajectory diverges. This paper
shows how the Strong integral Input-to-State Stability (Strong
iISS) property allows for quantifying the effects of the exogenous
inflow on the flow dynamics. The Strong iISS property enables
a unified stability analysis of classes of dynamical flow networks
that were only partly analyzable before, such as networks with
cycles, multi-commodity flow networks and networks with non-
monotone flow dynamics. We present sufficient conditions on the
maximum magnitude of exogenous inflow to guarantee input-to-
state stability for a dynamical flow network, and we also present
cases when this sufficient condition is necessary. The conditions
are exemplified on a few existing dynamical flow network models,
specifically, fluid queuing models with time-varying exogenous
inflows and multi-commodity flow models.

Index Terms—dynamical flow networks, input-to-state stability,
transportation networks, queuing networks

I. INTRODUCTION

Dynamical flow networks serve as macroscopic models for
physical network flows such as transportation networks [2],
[3], [4] as well as non-physical processing networks such
as queuing systems [5]. One common component for those
networks is a limitation on the magnitude of exogenous inflow
the networks can accommodate due to, e.g., maximum flow
capacity on the roads or maximum processing capacity at a
server. The dynamics of such networks is often non-linear,
both due to the physical flow dynamics itself and saturation
in the service rates. Thus, classical techniques such as linear
system analysis are not enough to analyze these systems’
stability properties.

In many of the aforementioned applications, the goal is to
keep link densities or queues bounded. It is generally observed
that this is possible as long as the exogenous inflow to the
network stays below a certain threshold. The purpose of this
paper is to formalize this observation as necessary and suffi-
cient conditions for stability for a large class of dynamic flow
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networks. The Strong Integral Input-to-State property (Strong
iISS) was introduced in [6] for general dynamical systems to
combine integral input-to-state stability (iISS) with input-to-
state stability (ISS) for small inputs and to determine when the
input is small enough to guarantee the latter. Although those
two properties align naturally with the expected behavior of
dynamical flow networks, the Strong iISS property has not
been exploited for studying dynamical flow networks in a
general setting with features such as cycles, multi-commodity
flows, and non-monotone flow dynamics. In the context of
dynamic flow networks, apart from having the desired property
of guaranteeing stability when the exogenous inflow to the
network is lower than a certain threshold, the Strong iISS
property also imposes that if the exogenous inflow becomes
zero at a certain time, the total mass in the network will also
eventually converge to zero. For many applications, this is an
essential property. For example, in transportation networks,
a correct traffic signal control solution should trivially allow
vehicles to leave the network eventually.

Existing literature on stability of dynamic flow networks of-
ten focuses on the class of networks with dynamics that exhibit
a monotonicity property whereby state trajectories maintain
a partial order on the state space [7], [8], [9], or a related
mixed-monotonicity property [10]. In these cases, powerful
results from monotone systems theory and contraction theory
provide sufficient conditions for stability and, e.g., constructive
methods for obtaining Lyapunov functions.

However, as noticed in [11], when extending flow network
models to multi-commodity flows, the monotonicity property
is usually lost. Another example of when the system’s mono-
tonicity property is lost is when a feedback controller can
serve more than one queue simultaneously, and the service
is split in proportion to the demand in all queues that are
served simultaneously [12]. This situation is common in
many applications, such as when controlling traffic signals
in a transportation network. Other methods that have been
proposed for considering specific classes of networks include
using passivity theory [13] or constructing specific entropy-
like Lyapunov functions [14], but a general framework for
considering non-monotone dynamic flow networks remains
elusive.

In this paper, we propose Strong iISS as another important
tool, alongside monotone systems theory and contraction the-
ory, for studying a large class of dynamic flow networks. The
stability analysis in this paper partly relies on a special variant
of sum-separable Lyapunov functions similar to those that
have previously been combined with monotonicity properties,
e.g., [9], [15]. In particular, the Lyapunov function is based on
a transformation involving the inverse of the routing matrix for
the network. This transformation has previously been utilized
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to obtain monotonicity properties for tree-like flow networks
in [16].

Preliminary results on using Strong iISS to study dynamical
flow networks appeared in [1]. In this paper, we extend
those results by considering both bounded and unbounded
flow functions. We also show that, in the case of bounded
flow functions, it is always optimal to normalize the stability
condition by the capacity vector. Furthermore, we extend
the stability analysis to network flow dynamics described by
differential inclusions. This dynamic description is needed
when there is a possibility that a link with no mass present
can receive service, something that is common in, e.g., traffic
network applications where several links may belong to the
same service phase. We also extend the examples beyond those
presented in [1].

The rest of the paper is organized as follows: The remainder
of this section is devoted to introducing some basic notation
that will be used throughout the paper. In Section II, we
present the dynamical flow network model, together with a
few general model assumptions. We also show that under those
mild assumptions, dynamical flow networks are always iISS.
In Section III we show that a dynamical flow network is Strong
iISS. We present a sufficient condition on the exogenous inflow
for the dynamical flow network to be ISS and show how
this condition can be tightened when all the flow functions
are bounded. We also present a case when the ISS condition
is tight for a local network and an alternative bound on the
growth rates of the state that differs from the standard Strong
iISS bound. In the following section, Section IV, we extend
the analysis to network flow dynamics where the outflow is
described through differential inclusion. In Section V, we illus-
trate how the stability theory can be applied to existing models
for dynamical flow networks, namely dynamical networks with
time-varying exogenous inflows and multi-commodity flow
networks. The paper is concluded with some ideas for future
research.

A. Notation

We let R+ denote the non-negative reals. For a finite set
A, RA

+ denote the set of non-negative vectors indexed by A.
Unless stated otherwise, for a vector x 2 Rn, we let kxk
denote the `1 norm. For vectors, all inequalities apply element-
wise. For vectors w, x 2 Rn

+ such that w > 0, we introduce
the weighted `1-norm as kxkw = wTx. The all-one vector is
denoted by 1 with the appropriate dimension. We denote the
indicator function for when a variable x is strictly positive as
1(x>0). A function µ : R+ ! R+ is said to be of class K1
if it is strictly increasing, µ(0) = 0, and limx!+1 µ(x) =
+1. A function � : R+ ⇥ R+ ! R+ is said be of class
KL if �(0, t) = 0 for all t, it is strictly increasing in x for
each fixed t, and it is decreasing in t for each fixed x and
limt!+1 �(x, t) ! 0.

II. MODEL

We model a dynamical flow network as a directed multi-
graph, i.e., in contrast to a directed graph there can exist
multiple parallel links between two nodes, G = (V, E), where

V is the set of nodes and E is the multiset of links. We
will assume that the graph has no self-loops. For a link
e = (i, j) 2 E , we let ⌧(e) denote the tail of the link, i.e.,
⌧(e) = i, and �(e) the head of the link, i.e., �(e) = i.
Moreover, we let Ev denote the subset of incoming links to
node v 2 V , formally Ev = {i 2 E | �(i) = v} ⇢ E .

In the flow network, mass flows along the links E . There-
fore, the network’s state x 2 X = RE

+ is the vector of masses
on all the links in the network and X is the state space. We
let �(t) 2 RE

+ denote the vector of possible time-varying
exogenous inflow to the links, and for links that can have
no exogenous inflow, the corresponding elements in �(t) will
be identically zero.

To model the mass propagation through the network, we
introduce the routing matrix R 2 RE⇥E . The element Rij

in the routing matrix is the fraction of outflow from link i
that will proceed to link j. Hence, 0  Rij  1. Moreover,
due to conservation of mass it must hold that for all i 2 E ,P

j Rij  1 where 1 �
P

j Rij is the fraction of mass that
leaves the network after flowing out from link i. Since the
routing matrix has to obey the network topology, Rij > 0
only if �(i) = ⌧(j).

Throughout the paper, we will make the assumption that
the network is outflow connected, i.e., from every link in the
network it is possible to find a path to a link where a fraction
of the mass can leave the network after flowing out from this
link.

Assumption 1: The routing matrix R is assumed to be out-
flow connected, i.e., for every link i 2 E there exists a path to
a link j 2 E such that

P
k Rjk < 1. The existence of a path

from link i to the link j can be equivalently expressed as that
there exists an integer ` > 0 such that (R`)ij > 0, i.e., there
exists a path of length ` between the links.

Assumption 1 implies that the spectral radius of the routing
matrix is less than one, and hence the matrix (I � RT ) is
invertible [17]. Its inverse can be computed through

(I �RT )�1 =
X

k�0

(RT )k = I +RT + (RT )2 + . . . .

The outflow from each link is controlled by a state-
dependent Lipschitz-continuous outflow function, which we
denote fi : RE

+ ! R+ for every link i 2 E . We let f(x) denote
the vector of all flow functions, i.e., f(x) = (fi(x))i2E . In this
setting we allow the outflow function to depend on the link’s
own state, which is common in applications where the outflow
only depends on the mass transportation dynamics on the link
itself. But we also allow for the outflow to be dependent on the
state of the neighboring links or the whole network, something
that is common in, e.g., queueing theoretic applications where
the service has to be split among different links.

We will make the following assumption about the flow
functions.

Assumption 2: We assume that the flow functions fi(x) are
always non-negative and such that fi(x) = 0 if and only if
xi = 0.

The “if” part of the assumption ensures that no mass can
flow out from the link if there is no mass present on the link.
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The “only if” part ensures that the flow functions are work-
conservative, i.e., if there is a mass present on one link, at
least some of it will flow out from the link. In Section IV, we
will relax the “if” part of this assumption to adopt a broader
set of outflow functions.

Remark 1: In contrast to some related work on dynamical
flow networks, e.g., [8], we impose no monotonicity assump-
tions on the flow functions.

The dynamics then follows from the conservation of mass:
the change of mass on each link equals the inflow from
the upstream links combined with potential exogenous inflow
minus the outflow from the link itself. That is,

ẋi = �i +
X

j2E
Rjifj(x)� fi(x) , 8i 2 E ,

which is expressed in vector form as

ẋ = �� (I �RT )f(x) . (1)

Remark 2: If the first part of the Assumption 2 holds, then
with the dynamics (1) the state-space X is positively invariant.
This since if xi = 0 for some i 2 E , then fi(x) = 0 and
ẋi = �i +

P
j2E Rjifj(x) � 0.

In many applications, the desired stability properties of the
network flow dynamics (1) under Assumptions 1 and 2 are the
following:

1) In the case of unbounded flow functions, the state should
always stay bounded when the exogenous inflows are
bounded. If the flow functions f(x) are bounded from
above, then for small enough �, the state x should stay
bounded.

2) If the exogenous inflow � becomes zero, then the state
x should eventually become zero as well.

The first property is often used to characterize the stability
properties of dynamical flow networks, since the requirement
of bounded states allows for, e.g., time-varying exogenous
inflows. It should also be noted that when the flow functions
are bounded, the dynamical flow network can not be ISS since
there will exist exogenous inflows large enough to make the
system unstable. The second property ensures that all the mass
in the network will eventually leave the network, something
that is desirable in, e.g., transportation network applications.

In the next section, we will see how these desired properties
fit well with the Strong integral Input-to-State Stability (Strong
iISS) property and show that the dynamical flow network
dynamics (1) is Strong iISS.

III. STRONG IISS PROPERTY FOR DYNAMICAL FLOW
NETWORKS

In the first part of this section, we show that dynamical
flow networks satisfying Assumptions 1 and 2 are Strong iISS,
which includes a sufficient condition on the exogenous inflows
for the system to be ISS. We then show that this sufficient
condition sometimes can be tightened by normalizing the flow
capacities when all the flow functions are bounded. While it
is possible to normalize the condition by any positive vector,
we show that the capacity vector is the optimal choice. We

then show a special case when the sufficient condition is
also necessary. In the last part of this section, we present an
alternative bound to the standard Strong iISS bound on the
state’s growth rate.

A. Dynamical Flow Networks are Strong iISS

Let us first recall the definition of Strong iISS from [6].
Definition 1 (Strong iISS, [6, Def. 2]): A dynamical system

ẋ = f(x, u) is said to be
1) Integral Input-to-State Stable (iISS) if there exists a

function � 2 KL, and functions µ1, µ2, µ 2 K1 such
that for all x(0) 2 RE

+ and all t � 0 the solution to
ẋ = f(x, u) satisfies

kx(t)k  �(kx(0)k , t) + µ1

✓Z t

0
µ2(ku(s)k)ds

◆
.

2) ISS with respect to small inputs if there exists a function
� 2 KL, a function µ 2 K1, and a constant input
threshold U > 0 such that when

ess sup
t�0

ku(t)k < U ,

for all x(0) 2 RE
+ and all t � 0 the solution to ẋ =

f(x, u) satisfies the bound

kx(t)k  �(kx(0)k , t) + µ

✓
ess sup

t�0
ku(t)k

◆
.

If a system is ISS with respect to small inputs and
the above bound holds for all inputs satisfying some
condition C, we also say the system is ISS with respect

to inputs satisfying C.
3) Strong iISS if the system is both iISS and ISS with

respect to small inputs, i.e., both 1) and 2) hold true.

The first part of the definition states that the size of the
state is limited by the integral of the input and is the classical
integral Input-to-State Stability (iISS) requirement [18]. The
second part of the definition implies that the state is always
bounded when the input is small enough, and in the following,
we will characterize input thresholds for dynamical flow
networks such that the above state bound holds. In the case
when the definition is valid for any choice of U , the system
has the classical Input-to-State Stability (ISS) property. It
should be noted that when there exists a time t0 � 0 such
that the input u(t) = 0 for all t � t0 � 0, then the state
will eventually converge to zero. Hence, the second part of
Definition 1 captures the desired stability properties mentioned
in Section II.

Next, we will prove that dynamical flow networks are Strong
iISS.

Theorem 1: A dynamical flow network (1) satisfying As-
sumption 1 and 2 is strong iISS. In particular, it is ISS with
respect to inputs satisfying

ess sup
t�0

X

i2E
ai(t) < lim inf

kxk!+1

X

i2E
fi(x) . (2)

where a(t) = (I �RT )�1�(t).
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Proof: Introduce the Lyapunov candidate

V = 1T (I �RT )�1x . (3)

Since x � 0 and (I � RT )�1 =
P

k�0(R
T )k, the Lyapunov

candidate (3) satisfies V (x) � 0 and V (x) = 0 if and only if
x = 0. Moreover,

dV
dt

=
@V

@x
f(x) = 1T (I �RT )�1(�� (I �RT )f(x))

=
X

i2E
ai(t)�

X

i2E
fi(x) . (4)

Let �(x) = x and W (x) =
P

i2E fi(x). Clearly, � 2 K1,
and

�(
��(I �RT )�1�(t)

��) =
X

i2E
ai(t) .

Eq. (4) can be rewritten
dV
dt

=
@V

@x
f(x) = �W (x) + �(

��(I �RT )�1�(t)
��) .

Due to Assumption 2, W (x) is positive definite. Now, apply-
ing [6, Theorem 1] gives the bound.

Remark 3: The bound (2) in Theorem 1 captures the physi-
cal properties of the network. In the case when some or all the
flow functions are bounded by some capacity constraints, the
right-hand side of (2) will attain the minimum of these capacity
constraints and hence impose a limit on the exogenous inflows.

Although the bound may be conservative, we will later on
exemplify when the bound is tight.

B. The Strong iISS Property for Bounded Flow Functions

In the case when all the flow functions are bounded such that
outflow capacity from each link is given by ci = supx�0 fi(x),
it is sometimes possible to state a less conservative condition
than (2) on the set of inputs that results in bounded state
trajectories. Let c = (ci)i2E be the vector of all capacities,
c̄ = (1/ci)i2E and C = diag(c). Moreover, for all links i 2 E ,
introduce the normalized flow functions

f̃i(x) =
fi(x)

ci
,

and let f̃(x) = (f̃i(x))i2E be the vector of all flow functions.
The dynamics (1) can then equivalently be written as

ẋ = �� (I �RT )Cf̃(x) .

For dynamical flow networks with bounded flow functions,
we obtain the following corollary of Theorem 1.

Corollary 1: Consider a dynamic flow network satisfy-
ing the hypotheses of Theorem 1. If, in addition, ci =
supx�0 fi(x) is finite for all i, then the system is ISS with
respect to small inputs satisfying

ess sup
t�0

X

i2E

ai(t)

ci
< lim inf

kxk!+1

X

i2E
f̃i(x) , (5)

where a(t) = (I �RT )�1�(t).
Proof: The proof follows the same way as the proof for

Theorem 1, but with the Lyapunov candidate

V (x) = 1TC�1(I �RT )�1x .

e1

e2

Fig. 1. The two node network used in Example 1 to illustrate a case when
the bound for ISS in Theorem 1 is tight.

The condition (5) in Corollary 1 can be less conservative
than its counterpart (2) in Theorem 1, as the following example
shows.

Example 1: Consider the two-link, two-node network in
Figure 1. Let f1(x1) = c1(1 � exp(�x1)) and f2(x2) =
c2(1 � exp(�x2)) with c1 = 1 and c2 � 1. Let the routing
matrix R be such that R1,2 = 0.9 and R2,1 = 1. Then
a1 = 10�1 + 10�2 and a2 = 9�1 + 10�2.

Using the condition in Theorem 1, the sufficient condition
(2) becomes

19�1 + 20�2 < min (c1, c2) = 1 ,

but by utilizing the fact that the functions are bounded, the
condition (5) in Corollary 1 becomes

�1 + �2

c1
+

�1 + �2

c2
< 1

which guarantees bounded state trajectories for larger exoge-
nous inflows when c2 is large. In fact, when c2 ! +1, the
condition above becomes

�1 + �2 < 1

which is arbitrary close to the necessary condition that �1 +
�2  1.

Remark 4: It is not always the case that the bound in
Corollary 1 is less conservative than the bound in Theorem 1.
For example, in a network with one link with exogenous inflow
�1 such that c1 = lim infx1!+1 f1(x1), the condition (5)
reads �1 < c21 and is hence only less conservative when
c1 > 1.

The previous example raises the question of whether, in the
case of bounded flow functions, another choice of normalizing
vector instead of the capacity vector c can yield a more
relaxed sufficient condition. To answer this question, we start
by observing that for the case when all the flow functions are
such that

• the flow only depends on the mass on the link itself, i.e.,
@

@xj
fi(x) = 0 for all j 6= i 2 E , and

• the flow attains it maximum in its limit, i.e.,
limxi!+1 fi(x) = ci for all i 2 E ,

the condition (5) in Corollary 1 reads

ess sup
t�0

X

i2E

ai(t)

ci
 1 .

The following proposition shows that in this case, the
capacity is the optimal choice of a normalizing vector.
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Proposition 1: Given vectors a 2 RE and c 2 RE
+ where

c > 0, suppose that there exists a strictly positive vector b 2
RE

+, b > 0 such that
X

i2E

ai
bi

 min
i2E

ci
bi
. (6)

Then the inequality (6) also holds for the choice b = c, i.e.,
X

i2E

ai
ci
1 .

Proof: Let
i⇤ = argmin

i2E

ci
bi

,

then inequality (6) is equivalent to
X

i2E

ai
bi

bi⇤

ci⇤
 1 .

But since c⇤i
b⇤i

 ci
bi

for all i 2 E , it also holds that bi
ci

 bi⇤
ci⇤

for all i 2 E and hence

1 �
X

i2E

ai
bi

bi⇤

ci⇤
�

X

i2E

ai
bi

bi
ci

=
X

i2E

ai
ci

.

C. Necessary Condition for Local Networks

While the condition (5) in Corollary 1 and its counterpart (2)
in Theorem 1 usually only are sufficient for ensuring bounded
state, there are special cases when the condition becomes
arbitrarily close to being necessary. One such example is a
local network, i.e., a network where all the links point to one
node, as shown in Figure 2.

Example 2: For a local network with constant inflows �,
the dynamics in (1) simplifies to

ẋi = �i � cifi(x) , 8i 2 Ev

and the solution satisfies

x(t) = x(0) + �t� C

Z t

0
f(x(s))ds .

By multiplying both sides by 1TC�1, we have

1TC�1(x(t)� x(0)) =

Z t

0

✓X

i2Ev

�i

ci
� fi(x(s))

◆
ds ,

where the right hand side goes to infinity as t ! +1 if
X

i2Ev

�i

ci
> lim inf

kxk!+1

X

i2Ev

fi(x) .

Since 1TC�1 is a strictly positive vector and x(t) > 0 for all
t � 0, it follows that

P
i2E xi(t) ! +1, which shows that

condition (5) with a non-strict inequality, i.e.,
X

i2Ev

�i

ci
 lim inf

kxk!+1

X

i2Ev

fi(x), (7)

is a necessary condition for the states to be bounded.

e1
e2

e3

Ev

Fig. 2. Example of a local network, i.e., a network where all the links point
towards a single node.

Remark 5: In the case when the flow functions are bounded
from above such that ci = lim infxi!+1 fi(xi), the condi-
tion (7) reads X

i2Ev

�i

ci
 1 .

This condition is similar to resource utilization conditions
in processor scheduling [19, Theorem 4.2] and queuing net-
works [20, p. 9].

D. Alternative Bound on the Growth Rate

The strong iISS condition implied by Theorem 1 provides
a bound on the norm of the state characterized by KL and
K1 functions not explicitly constructed. Instead, the following
bound applies for each link and follows from the observation
that the total amount of mass in the dynamical flow network
will always be bounded by its initial state and the amount of
exogenous inflow to the network. This bound does not require
Assumption 2.

Proposition 2: Consider a dynamical flow network (1)
satisfying Assumption 1 and let a(t) = (I�RT )�1�(t). Then

xi(t) 
Z t

0
ai(s)ds+ ⇠i , 8i 2 E ,

where ⇠ = (I �RT )�1x(0).
Proof: Let x̂ = (I �RT )�1x. Then

˙̂x = (I �RT )�1�(t)� f(x) = a(t)� f(x)

and x̂(0) = (I � RT )�1x(0). Since f(x) � 0, it holds that
˙̂xi  ai(t) for all i 2 E , and hence

x̂i(t) 
Z t

0
ai(s)ds+ x̂i(0) , 8i 2 E . (8)

Observe that x̂(t) � 0 for all t � 0 because (I � RT )�1 =P
k�0(R

T )k has all elements non-negative and both � � 0
and x(0) � 0.

By transforming back to x, i.e., x = (I � RT )x̂, it then
holds for each i 2 E that

xi(t) = x̂i(t)�
X

j2E
Rjix̂j(t)  x̂i(t) 

Z t

0
ai(s)ds+ x̂i(0) .

Remark 6: In (8), the term
R t
0 ai(s)ds is the total mass that

can possibly reach link i 2 E from outside the network, and
the term x̃i indicates how much mass can reach link i from
inside the network.
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IV. DIFFERENTIAL INCLUSION DYNAMICS

In the previous sections we assume that fi(x) = 0 when
xi = 0. However, there are applications, e.g., queuing theory
and traffic signal control, where this assumption does not hold.
For example, in traffic signal control, it can happen that several
lanes belong to the same service phase, and then traffic present
in one of the lanes will trigger the controller to serve all the
lanes in the phase, including those that are empty. However,
all the states will still stay non-negative.

To model this, we introduce a new state, the actual outflow
z 2 RE

+. The flow dynamics now reads

ẋ = �� (I �RT )z . (9)

The outflow is non-negative and is always upper bounded by
the flow functions f(x), i.e.,

0  z  f(x) .

Moreover, we assume that if there is mass present on the link,
i.e., xi > 0 for a link i 2 E , the amount of outflow will be
equal to the one given by the flow function, i.e., zi = fi(x).
This additional constraint is expressed as

xT (z � f(x)) = 0 . (10)

The dynamics (9)–(10) is a differential inclusion since when
xi = 0 for some link i 2 E , the actual outflow zi can be
anything between 0 and fi(x).

It can be shown that the dynamics in (9)–(10) is well-
posed, i.e., for a given initial state x(0), there exists a unique
solution [21].

The following theorem, which generalizes the previously
stated Theorem 1, can be used to analyze dynamical flow
networks where the flows are determined through differential
inclusion.

Theorem 2: A differential inclusion flow dynamics (9)–(10)
satisfying Assumption 1, and f(x) � 0, and fi(x) > 0 when
xi > 0 for all i 2 E is strong iISS. In particular, it is ISS with
respect to inputs satisfying

ess sup
t�0

X

i2E
ai(t) < lim inf

kxk!+1

X

i2E
1(xi>0)fi(x) ,

where a(t) = (I �RT )�1�(t).
Proof: Introduce the Lyapunov candidate

V (x) = 1T (I �RT )�1x .

Since (I�RT )�1 = I+RT +(RT )2+ . . . and x � 0, it holds
that V (x) � 0 and V (x) = 0 if and only if x = 0. Moreover,

dV
dt

= 1T (I �RT )�1ẋ

=
X

i2E
ai(t)�

X

i2E:xi>0

fi(x)�
X

i2E:xi=0

zi


X

i2E
ai(t)�

X

i2E
1(xi>0)fi(x) .

Now, following the same methodology as in the proof of
Theorem 1, but with W (x) =

P
i2E 1(xi>0)fi(x) instead

(which is positive definite, since fi(x) is assumed to be strictly
positive when xi > 0), [6, Theorem 1] can again be applied
to obtain the result.

v1 v2 v3

e1

e2

e3

e4

Fig. 3. The network for the example in Section V-A.
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Fig. 4. The aggregate mass on all the links for the example in Section V-A.
Although the sufficient condition only ensures stability for A = 0.125, the
system is stable for A = 0.45 too. For A = 0.51, the trajectory diverges.

V. NUMERICAL EXAMPLES

In this section we present two examples, both illustrative
of how the theory in this paper allows to analyze the stability
of dynamical flow networks for broader classes of dynamics
than was previously possible.

A. Time-Varying Inflows

Consider the network in Figure 3. Suppose that there are
only exogenous inflows to the first two links, i.e., �3 = �4 = 0
and let R1,4 = R1,3 = 0.5 and R2,4 = 1. Suppose that each
node splits the outflow from the incoming links according to

fi(x) =
xiP

j2Ev
xj + 1

, 8i 2 Ev , 8v 2 V = {v2, v3} .

For static inflows, the sufficient and necessary condition for
bounded state presented in [22] is �1 + �2 < 1.

Theorem 1 makes it possible to ensure stability for time-
varying inflows such that the sufficient condition to ensure
bounded state is now

ess sup
t�0

�1(t) + �2(t) <
1

2
. (11)

However, this condition is generally only sufficient. To illus-
trate this, we let

�1(t) = A(sin(t) + 1) , �2(t) = A(sin(t+ �) + 1) ,

and we consider several choices of A and �. When � = 0,
the sufficient condition in (11) is equivalent to A < 0.125.
However, as can be seen in Figure 4, the state remains bounded
for A = 0.45 but becomes unbounded for A = 0.51, which
illustrates the sufficiency of the condition. By instead letting
� = ⇡, the sufficient condition in (11) is now equivalent
to A < 0.25. The aggregate mass trajectories are shown in
Figure 5 for the different choices of A when � = ⇡.
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20

40

Time

P
i2

E
x
i(
t)

Aggregate mass when � = ⇡

A = 0.24 A = 0.45 A = 0.51

Fig. 5. The aggregate mass on all the links for the example in Section V-A. In
this case, with � = ⇡, the sufficient condition ensures stability for A = 0.24.
For A = 0.45 the sufficient condition is not stabilized, but the trajectory
remains bounded. For A = 0.51 the trajectory diverges.

e1

e2
e3

e4

e5 e6

e7

Fig. 6. The multi-commodity flow network used in the example in Sec-
tion V-B.

B. Multi-Commodity Flows

Although the analysis in this note is done for single com-
modity flows, it can be extended to multi-commodity flows,
i.e., dynamical flow networks where different commodities
share the same network, but differ in routing. In particular,
the technique can be used to accommodate any finite number
of commodities, but for the purpose of this example, assume
that we have two commodities, which we will denote A and
B. Let �A,�B 2 RE

+ denote the exogenous inflow of the
respective commodity. Each commodity is assumed to have
its own routing matrix, which we denote RA and RB , where
both routing matrices are assumed to satisfy Assumption 1
individually. As state space, we now need to keep track of the
mass of each commodity on every link in the network, i.e., the
state is (xA, xB) with xA, xB 2 RE

+. We let the vector x 2 RE
+

be the aggregate mass on each link, i.e., xi = xA
i + xB

i for
every link i 2 E . Under the assumption that the commodities
are perfectly mixed and travel with the same aggregate flow
dynamics, the dynamics for the flow network with bounded
outflow functions becomes

ẋA = �A � (I � (RA)T )Cdiag
✓✓

xA
i

xi

◆

i2E

◆
f(x) ,

ẋB = �B � (I � (RB)T )Cdiag
✓✓

xB
i

xi

◆

i2E

◆
f(x) .

This model has previously been used to study road traffic flows
where different commodities have different routing objectives
in [23]. Different from the stability results presented in that
paper, here, we allow the network to contain cycles.

Consider the network in Figure 6. Let the outflow func-
tions for each link be fi(xi) = 6(1 � e�xi). The non-

TABLE I
THE NON-ZERO ELEMENTS IN THE ROUTING MATRICES

Commodity A Commodity B
R1,2 0.6 0.7
R1,5 0.4 0.3
R2,7 0.1 0.3
R2,3 0.3 0.4
R2,4 0.6 0.3
R3,6 1 1
R5,6 1 1
R7,2 0.5 0.3
R7,5 0.5 0.7

zero elements in the routing matrix for each commodity are
specified in Table I. We observe that for both commodities
k 2 {A,B}, it holds that

P
j R

k
4,j =

P
j R

k
6,j = 0, and

the paths e1, e2, e7, e3, e6, e1, e5, e6, and e1, e2, e4 exists for
both commodities. Hence both the routing matrices satisfy
Assumption 1.

Define

aA(t) = (I � (RA)T )�1�A(t) ,

aB(t) = (I � (RB)T )�1�B(t) .

By using the Lyapunov function

V (x) = 1TC�1(I�(RA)T )�1xA+1TC�1(I�(RB)T )�1xB ,

and the same theory as in the proof of Theorem 1 and
Corollary 1, we obtain the following sufficient condition for
stability of the multi-commodity dynamics:

ess sup
t�0

X

i2E

aAi (t) + aBi (t)

ci
< lim inf

kxk!+1

X

i2E
fi(x) . (12)

In this example, note that lim infkxk!+1
P

i2E fi(xi) =
1. If we let �A

1 = 1, �B
1 = 0.7 and all other elements of

�A,�B be zero, the sufficient condition in (12) is satisfied.
The trajectory for each commodity is shown in Figure 7, with
the initial state xA

i (0) = 0.3 and xB
i (0) = 0.5 for all i 2 E .

VI. CONCLUSIONS

In this note, we have shown how the Strong integral
Input-to-State Stability (Strong iISS) framework is particularly
suitable for studying the stability of dynamical flow networks.
We established sufficient conditions on the exogenous inflows
for dynamical flow networks to be stable, i.e., ensure that
the state remains bounded, and showed that the condition is
also necessary for certain types of networks. We also showed
how the conditions can be applied to existing dynamical flow
network models and provided stability assurance in settings
not covered in prior literature.

A future research direction is to explore if the theory of
Strong iISS leads to alternative tighter bounds in certain
settings, e.g., by considering the time-averaged exogenous
inflow or dividing the network into several sub-networks.
Another topic for future research is also to explore how the
Strong iISS property can be extended or adapted to dynamical
flow networks where the storage is limited, such as certain
models for traffic flows.
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Fig. 7. The trajectories for commodity A and commodity B respectively in
the example in Section V-B.
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