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A B S T R A C T

Ride-sourcing platforms, among other solution services, offer convenience and flexibility when
it comes to pick-up/drop-off time and location. Similarly, ride-splitting renders itself as an
extension of ride-sourcing where platform users agree to share their rides in return for a reduced
fare yet possibly a longer travel time. Despite the numerous advantages that sharing introduced
to the platform operator by reducing the fleet size necessary to serve demand levels, e-hailing
is still overall negatively impacting traffic performance in urban spaces. This is partially due to
the current tendency of users to favor solo over shared rides. This paper aims to use aggregate
traffic flow models to put forward a network space redistribution policy that has the potential
to reduce total delays of the different mode users in the network. Accordingly, we investigate
the solo-pool demand split that minimizes the total Passenger Hours Traveled for all network
commuters in the event where shared rides are allowed to use underutilized bus lanes. As a
result, the choice to share is associated with an inevitable additional detour distance but with a
lower-than-expected trip time compared to standard scenarios where the whole fleet utilizes the
same network space. In this paper, we present an analytical macroscopic modeling approach to
evaluate equilibrium solutions between network supply and multi-modal demand. By resorting
to a numerical example of the model, we show that the optimal strategy that minimizes delays
for multi-modal transport users occurs when only a fraction of the pooling vehicles uses the
dedicated bus lanes. This fraction is dependent on the distribution of space and the value of
demand for private vehicles, buses, and ride-hailing services.

. Introduction

The rapid growth of ride-sourcing systems evinces an increasing interest in personalized trips where users input their origins
nd destinations, and service providers assign them to convenient rides. These services, also interchangeably called e-hailing, are
haracterized by a single platform connecting both riders and drivers. It collects the totality of requested trip details for which it
rovides a feasible driver match from the operating fleet of available online vehicles. Another type of service fundamentally similar
o ride-sourcing is referred to as ride-splitting. In the latter, passengers grant their approval a priori to share their rides with other
sers of the system in return for an upfront decrease in fares to compensate for any inconvenience that sharing incurs. Ride-splitting
as a myriad of advantages since it allows the same fleet of vehicles to accommodate a larger number of arriving requests while
educing the total travel distance (Ma et al., 2015).

Despite their success, the ubiquitous character of these platforms raises particular concerns because they provide the same service
tructure in heterogeneous urban areas with diverse spatial configurations, various mode availabilities, mismatched public transport
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service levels, and different traffic intensities. These factors justify the continuous effort to (i) set forth a framework that models the
operation of ride-sourcing services, and (ii) unravel their influences on traffic externalities, Vehicle Kilometers Traveled (VKT), modal
substitution and complimentary, long-term car ownership, and lastly social welfare of drivers and riders (Tirachini, 2020; Henao and
Marshall, 2017; Erhardt et al., 2019). Accordingly, a comprehensive understanding of the interactions between the previous factors
helps decision-makers to adopt informed policies and actions to regulate the operation of e-hailing platforms. The type and extent of
regulations are largely dependent on the expected outcomes that the government aims to achieve. The multi-purpose intervention
usually targets the fleet of vehicles by capping the number of registered drivers (Yu et al., 2020) or the cumulative time of driving
empty (Schaller, 2018). Beojone and Geroliminis (2021) showed that prompting Transport Network Companies (TNCs) to enact
parking management strategies is efficient in reducing empty VKT and subsequently mitigating congestion, as demonstrated by a
simulation study from a Chinese megacity.

To our knowledge, however, the assessment of incentive-based regulatory approaches rather than enforcement strategies is still
eficient in the literature. Moreover, the majority of the previous models developed to study the efficiency of any regulation policy
nly accounts for stakeholders in direct affiliation with the platform without consideration of other transport network users. A
eview of available work on pooling in the context of e-hailing and carsharing validates the potential of trip sharing in mitigating
ongestion and reducing VKT (Shaheen and Cohen, 2019; Tirachini, 2020). Accordingly, one such regulatory approach is to allow
ool ride-hailing vehicles to travel in dedicated, high-occupancy lanes. Practically, this policy is mainly characterized by its ease of
mplementation. For example, it is commonly known based on previous experience that a High-Occupancy Vehicle (HOV) lane is
ot easily enforceable, while ride-sharing for modes that use online platforms (e.g. like Uber, Didi, Lyft) is more straightforwardly
nforced. Nevertheless, if such a policy is implemented without proper knowledge of the interactions between vehicles, passengers,
nd infrastructure, it can lead to solutions that deteriorate the overall performance of the system.

Accordingly, the contributions of this paper are to present a new occupancy-dependent and modal-dependent space allocation
trategy for multi-modal transportation networks where each mode of transport exploits the network space differently: private
ehicles and solo ride-hailing users utilize the vehicle network, while pooled vehicles and buses utilize the bus network. We therefore
rovide a macroscopic modeling framework of the proposed allocation strategy using an aggregate formulation of the network
upply based on the theory of Macroscopic Fundamental Diagrams (MFDs), and a high-level modeling of ride-hailing, bus, and
rivate vehicle demand. To analyze this strategy, we design an analytical framework to demonstrate the solution existence, and to
valuate the change in the different network accumulations as function of the demand for solo and pool. This equilibrium is assessed
ccording to the allocation strategy. The model we present is versatile because it can be easily exploited to assess the influence of
ifferent spatial split and modal distribution on user delays. Our intention is to avoid the integration of tedious efforts related to
raffic assignment at the network level with multi-modal transport and instead to make use of an approximate aggregated network
odel (the MFD) that has been utilized in the literature mainly for car traffic, but also for bus–car interactions.

The remainder of this paper is organized as follows. The next section, Section 2, provides an overview of the existing literature
ackling different aspects of e-hailing operation, performance, and external influence. Section 3 elaborates on the transportation
ode-based network allocation model we propose in this work, and demonstrates the main analytical findings. In Section 4, we

nvestigate the effectiveness of the proposed model by closely studying a numerical example. We additionally look into the results
or one variant of this model where only a fraction of the pooled vehicles is allowed in the bus lanes. Finally, Section 5 concludes
ith the results’ summary and advances future research considerations.

. Literature review

Efforts are converging in the research community to properly model, understand, and possibly improve vehicle-passenger
atching operations, spatial and temporal fare differentiation, demand forecasting, and idle vehicle rebalancing in ride-sourcing

ystems. By analogy with aggregate equilibrium in traditional taxi services, some characteristics of the ride-hailing supply markets
re straightforwardly inferred. However, probably the most obvious distinction to point out is a direct outcome of the existence of
omplete information on the location of drivers and users. The platform dispatches an available driver to perform a pick-up operation
ased on prior knowledge of the user’s origin. Despite its apparent usefulness, the dispatch distance is a source of inefficiency in
he event of a supply shortage as pointed out by Castillo et al. (2017). This behavior is otherwise not observable in street-hailing
arkets where supply is a monotonic function of the waiting time. Xu et al. (2020) reproduced the backward bending supply curve

nd showed that by limiting the search area for an empty vehicle, it is possible to lessen the bend.
The formulation of bilateral meeting functions or the behavioral modeling of drivers and passengers are also some of the

undamental aspects of the taxi/e-hailing markets. Researchers on one hand assessed the stationary equilibrium state for street-
ailing taxi services (Yang et al., 2010), simultaneous e-hailing and street-hailing services (He and Shen, 2015), or exclusive e-hailing
ervices (Zha et al., 2016; Zhang and Nie, 2021). On the other hand, they studied e-hailing markets under dynamic non-equilibrium
ettings for different pricing schemes (Nourinejad and Ramezani, 2020). Pricing itself is also extensively addressed in the literature
s a course of action to eliminate market inefficiencies. Cachon et al. (2017) examined the importance of surge pricing in ensuring
n optimal service in terms of capacity utilization and demand satisfaction. Zha et al. (2018a) showed that passenger welfare is
egatively impacted by abrupt price increase, and the attenuation of this effect is possible through a platform commission cap.
ontrary to the previous three studies which focused on temporal price variation, Zha et al. (2018b) and Bimpikis et al. (2019)
ssessed spatial price discrimination to balance the heterogeneous distribution of demand.

Another research line within this scope focuses on the precise quantification of the ambiguous effect of ride-sourcing on VKT and
30

ongestion, mainly because of the numerous intertwining factors governing this relationship (Rayle et al., 2016). Efficient real-time
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management of the vehicle fleet entails an improved utilization of available capacity and a lower vacant to occupied distance ratio
compared to conventional taxi services (Cramer and Krueger, 2016). Nevertheless, ride-sourcing is sometimes validly regarded as
a transit substitute, particularly in areas where public transportation services are deficient. Using a simulation-based approach and
survey data from Santiago, Tirachini and Gómez-Lobo (2019) demonstrated that in scenarios where e-hailing replaces transit, an
increase in VKT is inevitable if no pooling is involved. This increase does not necessarily hold when e-hailing rather complements
transit by reinforcing its usage (Hall et al., 2018). Using static multi-modal choice models, Ke et al. (2021b) and Zhu et al. (2020)
provided insights on how to enforce complementarity between public transport from one side and ride-sourcing/ride-splitting from
the other. Similarly, Feng et al. (2022) proposed an algorithm to improve the coordination between ride-hailing and public transit,
and therefore to achieve better utilization of transit modes, and higher platform revenues.

From a modeling point of view, understanding the impact of ride-sourcing or ride-splitting on congestion requires the revisit of
raffic assignment or aggregate traffic flow models. Xu et al. (2019) proposed a framework to incorporate the behavior of idling
nd dispatching vehicles into current assignment models and investigated network equilibrium under different spatial matching
trategies. Vignon et al. (2021) proposed a model for ride-splitting markets in the presence of background congestion to evaluate
latform profit maximization for different congestion levels. Similarly, Mo et al. (2022) captured traffic externalities in their
odeling of ride-hailing markets with a mixed fleet of autonomous and human-driven vehicles. Ke et al. (2020b) used a linear

peed-density relationship to compute the maximum achievable ride-sourcing and ride-splitting service rates and showed that under
pecific conditions, pooling decreases the travel time in the network. Their model accounts for private and ride-hailing vehicles
ithout consideration of mass transit or the potential utilization of bus lanes for pooled trips. By assuming that the origins and
estinations of passengers are within walkable distance, they did not factor for the additional detour time which, along with the
rice discount, are the major determinants of the willingness to share (Alonso Gonzalez et al., 2020; Lo and Morseman, 2018). The
etour distance itself is also critical in evaluating the pooling potential to reduce VKT. Empirical evidence exhibits an obvious trend
n terms of the relation between passenger detour and pool demand level where the former decreases with the latter (Ke et al.,
021a). Through the development of a detour-constrained analytical model, Daganzo et al. (2020) validated the observation that
ide-splitting becomes more beneficial when trip requests increase. The sole consideration of the detour distance, however, is not
ufficient in formulating choice models between solo and pooled rides.

To incentivize ride-splitting and ameliorate sharing opportunities, researchers focused on assessing price regulation rather than
ooled vehicle spatial prioritization. Generally speaking though, dedicated bus lanes or special Autonomous Vehicles (AV) lanes are
xpected to improve network delays or social costs if space allocation policies are carefully chosen whether on the link level for AVs
Lamotte et al., 2017) or for buses (Eichler and Daganzo, 2006), or the network level (Mesbah et al., 2011). In the former case, Bus
anes with Intermittent Priority (BLIP) are useful to decrease the delays of highly occupied buses but this strategy is time and space
ependent. Moreover, it creates a platoon of vehicles moving in the bus lanes in between bus arrivals while disabling the possibility
f simultaneous usage by buses and vehicles. This strategy is therefore not able to capture the interference of vehicles in bus flow. In
he latter case, the existence of an urban-scale MFD (Geroliminis and Daganzo, 2008) or a three-dimensional MFD (Geroliminis et al.,
014) provides increased convenience and flexibility when solving optimal multi-modal space allocation problems as it circumvents
he need for a lower-level traffic assignment models. Zheng and Geroliminis (2013) for instance used a macroscopic approach to
ind a static and dynamic optimal allocation policy between buses and private vehicles. They showed that a dynamic distribution
f available space brings off a lower cumulative delay because of improved utilization of network capacities. Building on this work,
sitsokas et al. (2021) developed an optimization framework based on a large neighborhood search algorithm to find the optimal
us lane allocation scheme that minimizes the total travel time for all passengers in a network. With the advent of ride-splitting,
t becomes hence particularly interesting to observe how such policies are adapted to integrate new modes into optimal allocation
trategies.

. Model formulation

The following section elaborates on the model that enables us to examine the redistribution of ride-splitting demand in an
rban space in the existence of other modes of transport. We start by presenting a high-level overview of the model in Section 3.1.
ubsequently, in Section 3.2, we delve into the dynamics of the vehicle and bus networks, and we derive some theoretical properties
or each network model. Under the assumption that the demand for each transportation mode is fixed, it is possible to compute the
umber of private vehicles, buses, and ride-hailing drivers that are present in the network. In Section 3.3, we present our models for
he computation of the vehicle and bus network accumulation together with their analytical properties. In Section 3.4 we exhibit the
ptimization problem for obtaining a system optimum value for delays, and we furthermore discuss the properties of this optimum.
t the end of this modeling section, we suggest how to obtain this system optimum when ride-hailing vehicles are not allowed to
se the bus network. This modal allocation will serve as a benchmark scenario for the numerical studies displayed in the section
fter.

.1. Network model

In the network under consideration, travelers perform their trips by one of the set  of available options: private vehicles pv,
buses b, or ride-hailing services rh such that  = {𝑝𝑣, 𝑏, 𝑟ℎ}. Commuters who opt for the ride-hailing alternative pick out from the
choice set 𝑟ℎ to either travel solo or to pool their trips with other users of the service. We refer to the latter two trips as s and
31

p respectively such that 𝑟ℎ = {𝑠, 𝑝}. In the first case, passengers do not share their rides with any other passenger all throughout
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Fig. 1. A schematic sketch of the suggested network configuration and the modal-dependent space allocation that we assess in this paper.

their trips. In the second case, passengers share their rides with exactly one other passenger for at least a subpart of their total
trips. Throughout the paper, we assume a spatial distribution between modes such that buses exclusively utilize dedicated bus lanes
to transport passengers, and private vehicles share the remaining of the network. For this purpose, we let 𝛼 ∈ [0, 1] denote the
spatial fraction of the whole network allocated to private vehicles. Thereafter, the spatial fraction devoted to dedicated bus lanes is
̄ = 1 − 𝛼. When 𝛼 = 0, the full network space is devoted to buses whereas when 𝛼 = 1, the network becomes an exclusive vehicle
network. We note that 𝛼 is an intrinsic property of the network infrastructure, and changing its value is often very costly. With
respect to the fleet of ride-hailing vehicles, in the event where drivers are matched to a pooled trip, their entire rides are performed
in the bus network. Elsewise, all idle, dispatched, and solo-ride drivers travel in the vehicle network in conjunction with private
vehicles. For the rest of this study, we will refer to the vehicle network as  , and to the bus network as .

Let 𝑄𝑚 be the travel demand for mode 𝑚 ∈  expressed in passengers per hour, its value remains unchanged in this study.
The split of ride-hailing demand between solo and pool however is assumed to be variable. Therefore, we let 𝛽 ∈ [0, 1] denote the
fraction of 𝑄𝑟ℎ that selects a solo trip. In particular, we investigate in this work how the value of 𝛽 affects the total delay for all
network commuters. Mainly, when ride-hailing users choose to pool such that 𝑄𝑝 = (1 − 𝛽)𝑄𝑟ℎ is the pooling demand, this portion
of ride-hailing trips interferes with the bus speed, causing it to decrease. If instead ride-hailing users choose to travel solo such that
𝑄𝑠 = 𝛽𝑄𝑟ℎ is the demand for solo trips, they affect the speed in the vehicle network. Another element that has a significant influence
on speed is the factor 𝛼 dictating the spatial size of the bus and vehicle networks. The larger the value of 𝛼, the higher the capacity
of the vehicle network, and the lower that of the bus network. Within this context, we additionally investigate in this study how the
optimal demand split between solo and pool trips varies with 𝛼. The ultimate purpose is to assess how the two variables 𝛼 and 𝛽
affect the quality of the mobility in a network in terms of total user delays. Fig. 1 provides a summary of our model, including the
different modes of transport we consider and how they differently load each of the networks. Additionally, it exhibits the various
variables we investigate in this work.

To evaluate network delays, a proper estimation of the speeds in the vehicle and bus networks is required. We denote the speed
in these networks by 𝑣 and 𝑣 respectively. According to the model in Fig. 1, 𝑣 is a function of the accumulation of private
vehicles 𝑛𝑝𝑣 and that of empty/solo trip e-hailing vehicles 𝑛𝑠. Conversely, the speed in the bus network is dependent on the number
of pooled drivers that we denote by 𝑛𝑝 and the fleet of buses that we denote by 𝑛𝑏. We point out here that, because buses have to
repeatedly dwell at bus stops, their influence on speed is not equivalent to that of the pooled vehicles. For this reason, we split both
vehicle quantities instead of aggregating them to accurately model speed in the bus network. Moreover, as we previously described,
both speed functions are linked to the fraction 𝛼 which dictates the space division between the two networks. For us to examine the
values of travel times for each individual mode, we resort first to aggregate traffic flow models to define the relationship between
speed and accumulation.

A summary of all the different variables used in this work, along with their descriptions is displayed in Table 1.

3.2. Traffic dynamics

In the model we presented, the space-mean speed is a crucial element to evaluate the average trip time for all mode users. Let
𝑛 be the vehicle accumulation in the full network, and 𝑣 its speed. We know that as the accumulation 𝑛 increases, the network
becomes more and more congested, and hence its speed decreases. If 𝑄 is the total effective trip demand and 𝑙 is the average trip
length, then the vehicle production 𝑃 expressed in vehicle kilometers per unit time is defined by 𝑃 = 𝑛𝑣. Hence, when the system
is at steady-state, it must hold that 𝑃 = 𝑄𝑙. Next, we formalize the properties of the network speed function.
32
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Table 1
List of notations.
Variable name Description

 Set of transportation modes where  = {𝑝𝑣, 𝑟ℎ, 𝑏}
𝑟ℎ Set of ride-hailing options where 𝑟ℎ = {𝑠, 𝑝}
𝑛 Total vehicle accumulation
𝑃 Total production in the network
𝑣 Network speed
𝛼 Fraction of space allocated to the vehicle network 
𝑛 , 𝑛 Accumulation in the vehicle and bus network  and  respectively
𝑛𝑖 Number of vehicles of category 𝑖 ∈  ∪𝑟ℎ
𝑃 , 𝑃 Production in the vehicle and bus network  and  respectively
𝑃𝑝, 𝑃𝑏 Production of pool vehicles and buses respectively in the bus network 
𝑣 , 𝑣 Speed in the vehicle and bus network  and  respectively
𝑣𝑝, 𝑣𝑏 Speed of pool vehicles and buses respectively in the bus network 
𝑘 Function of influence of buses on speed in the bus network 
𝑄𝑖 Demand for mode 𝑖 ∈  ∪𝑟ℎ
𝛽 Fraction of ride-hailing requests opting for solo trips
𝑁 Ride-hailing fleet size where 𝑁 = 𝑛𝑟ℎ
𝐼 Number of idle ride-hailing vehicles in the network
𝑑 Dispatched distance for ride-hailing vehicles
𝑤 Waiting time of ride-hailing requests
𝜏 Ride-hailing platform target waiting time
𝑇 Total driver pooled trip length
�̄�𝑝, �̄�𝑏 Average pool vehicles and bus occupancy respectively
�̄�𝑏 Design bus speed
𝑙, 𝑙𝑏 Average vehicle and bus trip length respectively
𝛥𝑙𝑑 , 𝛥𝑙𝑝 Driver and passenger pooled trip detour distance respectively
𝛥𝑡𝑑 Driver pooled trip detour time
𝜇 Monetary value of time
𝜅, 𝜅𝑝 Logit scale and nest scale parameter respectively
𝛾 Fraction of 𝑄𝑝 utilizing the bus lane
𝐹𝑠 Solo ride fare
𝜙 Pool trip discount factor
𝑡𝑠, 𝑡𝑝 Solo and pool passenger trip length respectively
𝑡𝑠 , 𝑡𝑝 Pool passenger trip length in the vehicle and bus network  and  respectively
𝑡𝑑 Average bus dwell time at stops
�̄� Average spacing between bus stops

Definition 1 (Network Speed Function). Let 𝑛𝑐𝑟 > 0, 𝑛𝑗𝑎𝑚 > 0 and 𝑣𝑚𝑎𝑥 > 0 be the critical accumulation, jam accumulation, and
maximum speed in the network respectively such that 𝑛𝑐𝑟 < 𝑛𝑗𝑎𝑚, then a network speed function 𝑣 ∶ [0, 𝑛𝑗𝑎𝑚] → [0, 𝑣𝑚𝑎𝑥] has the
following properties:

(i) 𝑣(0) = 𝑣𝑚𝑎𝑥
(ii) 𝑣(𝑛𝑗𝑎𝑚) = 0

(iii) 𝑣′ ≤ 0 for all 𝑛 ∈ [0, 𝑛𝑗𝑎𝑚]
(iv) 𝑣(𝑛𝑐𝑟) + 𝑛𝑐𝑟𝑣′(𝑛𝑐𝑟) = 0
(v) 2𝑣′ + 𝑛𝑣′′ < 0 for all 𝑛 ∈ [0, 𝑛𝑗𝑎𝑚]

Part (i) of the definition ensures that the network speed reaches its maximum when there are no vehicles in the network. Part
(ii) indicates that when the network is jammed, the speed is zero. Part (iii) states that the network speed is non-increasing with its
accumulation, i.e., the speed can never increase when more vehicles join the network. Finally, parts (iv) and (v) guarantee that the
production function 𝑃 = 𝑛𝑣 is strictly concave. Although there are decreasing speed functions that yield a non-concave MFD, the
concavity assumption is valid for most of the MFD functions used in the literature (Cheng et al., 2021), especially in the uncongested
and lightly congested regime. This concave production function has a unique maximum, and this maximum is achieved when the
accumulation in the network attains its critical point 𝑛𝑐𝑟. It follows that when 𝑛 < 𝑛𝑐𝑟, the network is in the uncongested regime and
𝜕𝑃
𝜕𝑛 = 𝑣 + 𝑛𝑣′ > 0. On the contrary, when 𝑛 > 𝑛𝑐𝑟, the network enters the congested regime where 𝑣 + 𝑛𝑣′ becomes negative.

3.2.1. Vehicle network
Under the proposed space allocation strategy, the network infrastructure is segmented into two distinct subnetworks, each having

its own production function. Consequently, having a well-defined production MFD function for the full network makes it possible to
derive that of the vehicle network using the spatial fractional split factor 𝛼. This corresponds to a rescaling of the full network MFD
such that if 𝑃 is the production function for the vehicle network only, then 𝛼𝑃 (𝑛) = 𝑃 (𝛼𝑛). This results in the following speed
elation (Geroliminis et al., 2013; Ni and Cassidy, 2019)
33

𝑣(𝑛) = 𝑣 (𝛼𝑛) . (1)
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Accordingly, we obtain a relationship between speed and accumulation that is exclusive to the vehicle network, irrespective of the
state of the bus network. It follows that the production 𝑃 and speed 𝑣 in the vehicle network have the same properties introduced
n Definition 1 except for replacing 𝑛𝑐𝑟 and 𝑛𝑗𝑎𝑚 by 𝛼𝑛𝑐𝑟 and 𝛼𝑛𝑗𝑎𝑚 respectively. As a result, if 𝑛 is the accumulation in the vehicle

network according to our model, then the speed in the vehicle network is 𝑣 (𝑛 , 𝛼). To simplify the notation, unless the dependency
of 𝛼 is explicitly needed, we will write the vehicle network speed function as 𝑣 (𝑛 ) and let 𝑣′ (𝑛 ) =

𝜕
𝜕𝑛

𝑣 (𝑛 , 𝛼).

emma 1. If the overall network speed function satisfies Definition 1, then the production function for the vehicle network 𝑃 (𝑛 ) =
𝑛𝑣 (𝑛 ) is concave with respect to 𝑛 .

roof. Finding the first and second derivative with respect to 𝑛 of (1), we obtain that 𝑣′(𝑛) = 𝛼𝑣′ (𝛼𝑛) and 𝑣′′(𝑛) = 𝛼2𝑣′ (𝛼𝑛). It
ollows from part (v) of Definition 1 that

0 > 2𝑣′(𝑛) + 𝑛𝑣′′(𝑛) = 2𝛼𝑣′ (𝛼𝑛) + 𝑛𝛼2𝑣′′ (𝛼𝑛) = 𝛼
(

2𝑣′ (𝛼𝑛) + 𝑛𝛼𝑣′′ (𝛼𝑛)
)

. (2)

eplacing 𝛼𝑛 by 𝑛 , we obtain that 2𝑣′ (𝑛 ) + 𝑛𝑣′′ (𝑛 ) < 0 for all 𝑛 ∈ [0, 𝛼𝑛𝑗𝑎𝑚] since 𝛼 > 0. □

.2.2. Bus network
In a similar manner, the production in the bus network is related to the full network production by knowing that �̄�𝑃 (𝑛) = 𝑃(�̄�𝑛).

n contrast however to the vehicle network, simply adding the bus and vehicle accumulation does not yield a reliable input for the
stimation of the running speed from the full network production function. This is because an adjustment is required to account for
he frequent stops of buses at stations and the subsequent hindering of vehicle movements. This effect is observed when translating
he bus network MFD to the three-dimensional space where the accumulation of buses and vehicles are separated (Geroliminis
t al., 2014; Loder et al., 2017; Fu et al., 2020). This is because this function returns the values of production with respect to the
ccumulation of buses 𝑛𝑏 and the accumulation of pooled vehicles 𝑛𝑝 and not as the sum of the two accumulations 𝑛𝑝 + 𝑛𝑏. In the
aseline scenario where 𝑛𝑏 = 0, we know that Definition 1 also applies to the speed in the bus network 𝑣 except that the jam
ccumulation is achieved for a value equal to �̄�𝑛𝑗𝑎𝑚. However, as the number of buses increases, the MFD definition is expanded
o englobe the distinctive influence that buses have on speed. Hence, the functional form of production in the bus network is
(𝑛𝑝, 𝑛𝑏, 𝛼) = 𝑛𝑝𝑣(𝑛𝑝, 𝑛𝑏, 𝛼) + 𝑛𝑝𝑣𝑝(𝑛𝑝, 𝑛𝑏, 𝛼) where 𝑣𝑝 is the operating speed of buses in network . Just as for the vehicle network
e will, for simplicity of the notation, drop the dependency of 𝛼 unless it is explicitly needed, such that the speed in the bus network
ill be denoted as 𝑣(𝑛𝑝, 𝑛𝑏). Given this expression of production in the bus network, we define a bus network speed function as

ollows:

efinition 2 (Bus Network Speed Function). A bus network speed function 𝑣 where 𝑣(𝑛𝑝, 𝑛𝑏, 𝛼) ∶ {(𝑛𝑝, 𝑛𝑏) ∣ 𝑛𝑝 ≥ 0, 𝑛𝑏 ≥ 0, 𝑛𝑏 + 𝑛𝑝 ≤
�̄�𝑛𝑗𝑎𝑚} × [0, 1] → [0, 𝑣𝑚𝑎𝑥] is given by 𝑣(𝑛𝑝, 𝑛𝑏, 𝛼) = 𝑣

( 1
�̄� (𝑛𝑝 + 𝑛𝑏)

)

𝑘(𝑛𝑏) where 𝑘 ∶ R≥0 → (0, 1] is a decreasing function and 𝑣 is the
full network speed function.

The following three properties of the bus network are immediate consequences of Definition 2:

(i) if 𝑛∗𝑝(𝑛𝑏) = arg max𝑛𝑝 (𝑃), then
𝑑𝑛∗𝑝
𝑑𝑛𝑏

< 0

(ii) 𝜕𝑣
𝜕𝑛𝑝

≤ 0 and 𝜕𝑣
𝜕𝑛𝑏

≤ 0

(iii) 𝜕𝑣
𝜕𝑛𝑏

≤ 𝜕𝑣
𝜕𝑛𝑝

he first element guarantees that the vehicle accumulation at capacity reduces as the number of buses in the network increases.
ith respect to the vehicle speed function, part (ii) ensures that the running speed in the bus network decreases with both bus and

ehicle accumulations. Part (iii) shows that the speed decrease due to the addition of one bus is greater in absolute terms than that
ue to an addition of a pooling vehicle with 𝜕𝑣

𝜕𝑛𝑏
= 𝜕𝑣

𝜕𝑛𝑝
.

It is noteworthy that the speed obtained from the bus network MFD is the vehicle speed, i.e., the running speed 𝑣 of ride-
ailing drivers performing a pooled trip. Since buses make repetitive stops at stations to board and alight passengers, we compute
he operating bus speed 𝑣𝑏 by reducing 𝑣 by a factor less than or equal to one. This factor depends on the average spacing between
tops �̄� and on the dwell time 𝑡𝑑 such that

𝑣𝑏 =
⎛

⎜

⎜

⎝

1

1 + 𝑣
𝑡𝑑
�̄�

⎞

⎟

⎟

⎠

𝑣 . (3)

We conclude first that 𝑣𝑏 < 𝑣 since the factor 1

1+𝑣
𝑡𝑑
�̄�

< 1. Moreover, by writing 𝑣𝑏 in terms of 𝑣, it is possible to show that

𝜕𝑣𝑏
𝜕𝑣 > 0 and 𝜕2𝑣𝑏

𝜕𝑣2
< 0. This also applies when we write 𝑣𝑏 in terms of 𝑣, and find the first and second order derivatives with respect

o 𝑣. Furthermore, by finding 𝜕𝑣𝑏
𝜕𝑣

, it is straightforward to show that this derivative is always less than 1.
For the purpose of this analysis, we consider that the bus network is in the congested regime when 𝜕𝑃

𝜕𝑛𝑝
= 𝑣 + (𝑛𝑝 + 𝑛𝑏

𝜕𝑣𝑏
𝜕𝑣

) 𝜕𝑣𝜕𝑛𝑝
is negative. It follows from part (iii) and from (3) that 𝜕𝑃 is also negative because 𝜕𝑃 ≤ 𝜕𝑃 .
34
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Fig. 2. Vehicle and passenger production MFDs.

Lemma 2. If the overall network speed function satisfies Definition 1, then the production function for the bus network 𝑃(𝑛𝑝, 𝑛𝑏) =
𝑛𝑝𝑣 + 𝑛𝑏𝑣𝑏 is concave in 𝑛𝑝.

Proof. The second order partial derivative of 𝑃 with respect to 𝑛𝑝 is

𝜕2𝑃
𝜕𝑛2𝑝

= 1
�̄�
𝑘
(

1
𝑘�̄�

𝑛𝑏(𝑣′)2
𝜕2𝑣𝑏
𝜕𝑣2

+ 2𝑣′ + 1
�̄�

(

𝑛𝑝 +
𝑛𝑏

(1 + 𝑘𝑣 𝑡𝑑
�̄� )

2

)

𝑣′′
)

, (4)

which is always negative because the first element is negative since 𝜕2𝑣𝑏
𝜕𝑣2

< 0. Moreover, according to Definition 1, 2𝑣′ + 𝑛𝑣′′ < 0,
and for 𝑛 = 1

�̄� (𝑛𝑝 + 𝑛𝑝), 𝑛 ∈ [0, 𝑛𝑗𝑎𝑚], 2𝑣′ +
1
�̄� (𝑛𝑝 + 𝑛𝑏)𝑣′′ < 0. Given 1

(1+𝑘𝑣 𝑡𝑑
�̄� )2

< 1, it follows that 𝑛𝑝 +
𝑛𝑏

(1+𝑘𝑣 𝑡𝑑
�̄� )2

< 𝑛𝑝 + 𝑛𝑏. Hence 𝑃 is

concave in 𝑛𝑝. □

As buses belong to the mass transit transportation mode category, it is important to verify that the disturbance to the bus network
by pooled vehicles is minimized. For this purpose, we consider passenger production instead of the production when capturing the
influence of pooled vehicles on the flow of bus passengers. We let 𝑃𝑓 be the passenger production value in the bus network expressed
in passenger kilometers per hour, then 𝑃𝑓 is defined by

𝑃𝑓 (𝑛𝑝, 𝑛𝑏) = �̄�𝑝𝑛𝑝𝑣 + �̄�𝑏𝑛𝑏𝑣𝑏 , (5)

where �̄�𝑝 and �̄�𝑏 are the average occupancies of pooled vehicles and buses respectively. The first term of (5) computes the production
of passengers performing a pooled trip, and the second term computes the passenger flow for buses.

To exemplify the network MFDs, Fig. 2 shows the MFD functions we will use in the numerical section of this work to compute
the relationship between speed and accumulation. If the value of 𝛼 is set to 0.8, then Fig. 2(a) reflects how the production MFDs
for the bus and vehicle networks are expressed as a partition of the full network MFD. Every line shows the dependency of the
production on the actual category of only vehicles that are utilizing the network under consideration, i.e. 𝑛 for the full network, 𝑛
for the vehicle network, and 𝑛𝑝 for the bus network because 𝑛𝑏 is set to 0. Furthermore, when the bus network MFD is translated
to the three-dimensional space where both the accumulation of buses and vehicles are considered, then looking at the passenger
flow instead of the vehicle one is substantiated by the relatively larger occupancy of buses. Fig. 2(b) displays an example of the
3D passenger MFD that we denote by 3D pMFD where the values of production 𝑃𝑓 are expressed in terms of passenger rather
than vehicle production. Once all these relationships are established, it becomes possible to convert all demand values into vehicle
accumulation for the purpose of estimating delays for all commuters in the network.

3.3. Network accumulation

Assuming that the demand values 𝑄𝑝𝑣, 𝑄𝑟ℎ, and 𝑄𝑏 are known, we explore next how to use the network speed definitions
presented in Section 3.2 to estimate the ride-hailing fleet size but also the accumulations in the vehicle and bus network. We
particularly assess how this speed dependency affects the capacity and the service level of ride-hailing markets.

3.3.1. Ride-hailing services
Given that ride-hailing services are central in our analysis, we start first by characterizing the fleet size necessary for their service

provision. For simplicity, we assume a spatially homogeneous distribution of empty ride-hailing vehicles and passengers across the
35
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network. A monopoly platform receives all requests, and its functionality is to arrange a proper vehicle-request match and dispatch
but also to seize appropriate pooling opportunities when possible. If we discard the pooling alternative, the fleet size 𝑁 required
to serve the totality of the ride-hailing demand 𝑄𝑟ℎ consists of (i) idling vehicles, (ii) dispatched vehicles on their way to pick up a
passenger, and (iii) occupied vehicles. Hence the fleet size 𝑁 is computed as

𝑁 = 𝐼 +𝑄𝑟ℎ 𝑑(𝐼)
𝑣

+𝑄𝑟ℎ 𝑙
𝑣

, (6)

where, 𝐼 is the number of idle vehicles, 𝑑 is the dispatched distance from a request’s origin location to the nearest idle vehicle. The
dispatched distance 𝑑 is itself dependent on the number of unoccupied vehicles such that 𝑑′ < 0 because the higher this number,
the greater the chance of matching the passenger to a neighboring empty vehicle. Consequently, when idling vehicles are abundant,
the pick-up occurs almost instantaneously where lim𝐼→+∞ 𝑑(𝐼) = 0. When the number of idling vehicles is too low however, drivers
are expected to travel longer to pick up a passenger and as a consequence, we consider that the lim𝐼→0+ 𝑑(𝐼) = ∞. We additionally
assume that 𝑑 is convex and hence 𝑑′′ > 0. Without loss of generality, we adopt for the following analysis that the number of private
vehicles is constant in the vehicle network and hence if 𝑛 = 𝑛𝑝𝑣 +𝑁 , we know that 𝑣′ = 𝜕𝑣

𝜕𝑛
= 𝜕𝑣

𝜕𝑁 and 𝑣′′ = 𝜕2𝑣
𝜕𝑛2

= 𝜕2𝑣
𝜕𝑁2 .

roposition 1. For a fixed number of idle vehicles 𝐼 ∈ [0, 𝑁], the function 𝑄𝑟ℎ is concave in 𝑁 and hence admits a unique maximum
alue.

roof. From (6), we know that the supply rate 𝑄𝑟ℎ is

𝑄𝑟ℎ =
(𝑁 − 𝐼)𝑣

𝑙 + 𝑑
. (7)

The second order partial derivative of 𝑄𝑟ℎ with respect to 𝑁 is given by

𝜕2𝑄𝑟ℎ

𝜕𝑁2
=

2𝑣′ + (𝑁 − 𝐼)𝑣′′
𝑙 + 𝑑

. (8)

From Lemma 1, we know that 2𝑣′ + 𝑛𝑣′′ is always negative. Since 𝑁 ≤ 𝑛 , it follows that 2𝑣′ + (𝑁 − 𝐼)𝑣′′ ≤ 0. We conclude that
or a fixed 𝐼 ∈ [0, 𝑁], the 𝑄𝑟ℎ admits a unique maximum value because its function is concave in 𝑁 since 𝑙 + 𝑑 > 0 and therefore
𝜕2𝑄𝑟ℎ

𝜕𝑁2 is negative. □

To further understand the variation of the ride-hailing supply with the fleet size, we take the derivative of 𝑄𝑟ℎ with respect to 𝑁

𝜕𝑄𝑟ℎ

𝜕𝑁
=

𝑣 + (𝑁 − 𝐼)𝑣′
𝑙 + 𝑑

, (9)

where the sign of the partial derivative is dependent on the sign of the numerator. We infer from Proposition 1 hence that when the
influence of fleet size on network speed is accounted for in the ride-hailing supply function, the supply rate achieves a maximum,
after which increasing the fleet size negatively impacts 𝑄𝑟ℎ. This is because when 𝑣 > −(𝑁 − 𝐼)𝑣′ , the supply rate 𝑄𝑟ℎ strictly
ncreases with the fleet size 𝑁 and when 𝑣 < −(𝑁 − 𝐼)𝑣′ , the supply strictly decreases with the fleet size.

Remark 1. It should be noted that under the assumption that the speed is constant as in, e.g., (Zha et al., 2018b), the supply rate
will always increase with the fleet size. Namely, if the influence of the fleet size on speed is ignored such that 𝑣 remains constant
ndependently of 𝑁 , the partial derivative of 𝑄𝑟ℎ with respect to 𝑁 then becomes equal to

𝜕𝑄𝑟ℎ

𝜕𝑁
=

𝑣
𝑙 + 𝑑

, (10)

which is always greater or equal to zero because 𝑣 ≥ 0 and 𝑙+ 𝑑 > 0. This implies that 𝜕𝑄𝑟ℎ

𝜕𝑁 ≥ 0, and therefore it is always possible
o increase the capacity of the ride-hailing market by providing more vehicles.

This remark highlights the need to integrate the speed variant – in our case with an MFD representation – to better capture
nteractions between different modes within our space allocation framework.

In a similar manner, it is possible to show that the dispatching time from an idling vehicle active position to the pick-up location
f a request is influenced by the vehicle network speed. This quantity, which also designates the waiting time of requests, is therefore
function of the fleet size supplied by the ride-hailing operator and the number of idling vehicles in the network. First, the variations

n the availability of idle vehicles are associated with different ride-hailing market states as demonstrated by Castillo et al. (2017).
n fact, when the density of idle vehicles is high enough, the ride-hailing market exists in an efficient state where vehicles do not
pend much of their time dispatching. On the contrary, and in an inefficient supply state, the dispatching distance is very high such
hat too few idle vehicles remain available for pick-ups. Second, the fleet size alters the network speed, thus implicitly dictating the
aiting time of requests or alternatively the dispatching time of idle vehicles. We denote by 𝑤 this waiting time of a request before
eing picked up. Its expression is given by the ratio of the dispatched distance 𝑑 to the vehicle network speed 𝑣 such that 𝑤 = 𝑑

𝑣
.

roposition 2. For a fixed 𝑄𝑟ℎ, 𝑤 admits a minimum with respect to 𝑁 . This minimum occurs when the ride-hailing market is in the
′

36

fficient state and when 𝑣 + (𝑁 − 𝐼)𝑣 > 0.
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Proof. First we observe that whether the ride-hailing market is in one of the efficient or inefficient regime is dependent on the sign
of

𝜕𝑄𝑟ℎ

𝜕𝐼
= −

𝑣 + 𝑑′𝑄𝑟ℎ

𝑙 + 𝑑
. (11)

earranging the previous equation, we get

𝜕𝑄𝑟ℎ

𝜕𝐼
1
𝑑′

=
𝑣
𝑙 + 𝑑

(

− 1
𝑑′

− 𝑄𝑟ℎ

𝑣

)

. (12)

Assuming that the fleet size 𝑁 remains constant, then when all vehicles are idling, i.e, when 𝐼 = 𝑁 , 𝑄𝑟ℎ must be equal to 0, and
𝜕𝑄𝑟ℎ

𝜕𝐼
1
𝑑′ > 0 which means that, since 𝑑′ < 0, 𝜕𝑄𝑟ℎ

𝜕𝐼 < 0. As 𝐼 decreases, − 1
𝑑′ decreases and 𝑄𝑟ℎ

𝑣
increases. Hence, it follows from (11)

that when 𝑑′𝑄𝑟ℎ > −𝑣 , 𝜕𝑄𝑟ℎ

𝜕𝐼 continues to be negative up until 𝑣 and −𝑑′𝑄𝑟ℎ becomes equal and therefore the supply rate achieves
ts maximum. As 𝑑′ continues to decrease with 𝐼 , 𝜕𝑄𝑟ℎ

𝜕𝐼
1
𝑑′ becomes negative which implies that 𝜕𝑄𝑟ℎ

𝜕𝐼 > 0. This means that 𝑄𝑟ℎ

tarts increasing with 𝐼 because 𝜕𝑄𝑟ℎ

𝜕𝐼 > 0. As 𝐼 approaches zero, − 1
𝑑′ will always be strictly less than 𝑄𝑟ℎ

𝑣
because if both functions

intersect again, this happens at a simultaneously tangent and saddle/local optimum point for 𝑄𝑟ℎ. However, 𝜕
𝜕𝐼 (−

1
𝑑′ ) = 𝑑′′

𝑑′2
> 0

which is strictly positive. This means that this point does not exist and hence 𝜕𝑄𝑟ℎ

𝜕𝐼 > 0 as 𝐼 becomes lower than the optimum point
where the maximum system capacity is achieved. In this region, we have that 𝑑′𝑄𝑟ℎ < −𝑣 and the ride-hailing market is in the
inefficient state.

Since 𝑤 is a function of both 𝐼 and 𝑁 but 𝐼 is also an implicit function of 𝑁 , then the partial derivative of 𝑤 with respect to 𝑁
is

𝜕𝑤
𝜕𝑁

= 𝑑𝑤
𝑑𝑁

+ 𝜕𝑤
𝜕𝐼

𝜕𝐼
𝜕𝑁

(13)

= −
𝑑𝑣′
𝑣2

+ 𝑑′

𝑣

𝑣 + 𝑣′ (𝑁 − 𝐼)

𝑄𝑟ℎ𝑑′ + 𝑣
. (14)

irst for a given 𝑁 , 𝜕𝑤
𝜕𝐼 = 𝑑′

𝑣
< 0 which means that the waiting time always decreases with the number of idle vehicles. In other

erms, if 𝐼eff is the number of idle vehicles in the efficient regime and 𝐼ineff is that in the inefficient regime for a fixed supply
ate 𝑄𝑟ℎ, then 𝑤(𝐼eff) < 𝑤(𝐼ineff) irrespective of the value of 𝑁 . Consequently, if a minimum of 𝑤 with respect to 𝑁 exists, this

minimum occurs when the ride-hailing market is in the efficient state, i.e, when 𝑑′𝑄𝑟ℎ > −𝑣 . Therefore, we limit the scope of
this analysis to when the ride-hailing market is in this state. If the network is in the congested regime, 0 > 𝑣 + 𝑛𝑣′ according to
Definition 1. Nevertheless, 𝑣+(𝑁−𝐼)𝑣′ is either positive or negative since 𝑣+(𝑁−𝐼)𝑣′ > 𝑣+𝑛𝑣′ . We know however that when
𝑣 + (𝑁 − 𝐼)𝑣′ ≤ 0, 𝜕𝑤

𝜕𝑁 is positive and hence the waiting time increases with 𝑁 . However, when the network is in the uncongested
regime, or when the network is congested and 𝑣 + (𝑁 − 𝐼)𝑣′ > 0, 𝜕𝑤

𝜕𝑁 happens to be either positive or negative depending on the
alues of 𝑁 and 𝐼 . Moreover, when the ride-hailing market just shifts to the efficient state, we know that 𝑄𝑟ℎ𝑑′ + 𝑣 goes to 0+,
nd 𝜕𝑤

𝜕𝑁 goes to −∞. We conclude that the waiting time decreases with 𝑁 at the start of the efficient state. This is because 𝜕𝐼
𝜕𝑁 is

positive in this case which means that the start of the efficient regime is achieved for the lowest 𝑁 . This is true if 𝑣 +(𝑁 −𝐼)𝑣′ > 0
or the lowest 𝑁 satisfying 𝑄𝑟ℎ. Accordingly, 𝑤 admits a minimum with respect to 𝑁 which occurs when the ride-hailing market is
n the efficient state, and when 𝑣 + (𝑁 − 𝐼)𝑣′ is positive. □

So far we have assessed the fleet size required to exclusively serve solo trips. In our model however, we consider a ride-splitting
arket where users have the choice to travel solo or to pool. Consequently, following Ke et al. (2020a), we introduce two additional

lements into (6) to accommodate the possibility of trip sharing. Vehicles are dispatched to perform either one of the solo or pooled
rips. They then travel for a distance 𝑙 to drop off a single passenger, or a distance 𝑙 + 𝛥𝑙𝑑 to pick up a second passenger and drop
hem both off. 𝛥𝑙𝑑 is the driver detour defined as the additional distance traveled by drivers to perform a pooled trip relative to a
olo one. It is a function of the pooling demand 𝑄𝑝. Mainly, the higher the pooling demand, the better the trip match. This implies
hat the total length of a pooled trip becomes shorter when more passengers opt for pooling. Therefore, the driver detour decreases
ith 𝑄𝑝 which implies that 𝛥𝑙′𝑑 = 𝜕𝛥𝑙𝑑

𝜕𝑄𝑝 ≤ 0. Moreover, we assume that lim𝑄𝑝→0 𝛥𝑙𝑑 = ∞ and lim𝑄𝑝→∞ 𝛥𝑙𝑑 = 0. It follows that the fleet
size in ride-splitting markets is given by:

𝑁 = 𝐼 +
(

𝑄𝑠 + 1
2
𝑄𝑝

) 𝑑
𝑣

+𝑄𝑠 𝑙
𝑣

+ 1
2
𝑄𝑝

(

𝑙 + 𝛥𝑙𝑑 (𝑄𝑝)
𝑣

)

. (15)

The four terms in (15) represent vehicles that are: (i) idling, (ii) dispatching, (iii) occupied with one passenger, and (iv) occupied
with more than one passenger and assigned to a pooled trip. Notice that the speed function we use for the different terms in the
equation directly emerges from the network allocation policy proposed. Besides idling, both dispatched and solo-trip vehicles travel
at a speed 𝑣 . In contrast, vehicles performing a pooled trip travel at a speed 𝑣. Clearly, ride-splitting markets have the ability
o serve more trips with the same fleet size. Nevertheless, the detour distance is a crucial factor in determining the potential and
fficiency of the pooling alternative. According to our proposed model, a portion of this fleet size contributes to the accumulation
37

n the vehicle network whereas the remaining fraction enters the bus network and directly impacts the speed of buses.
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3.3.2. Vehicle network accumulation
The accumulation in the vehicle network consists of (i) idle vehicles, (ii) dispatched vehicles, (iii) ride-hailing vehicles performing

solo trip, and (iv) private vehicles. Accordingly, the total network accumulation in the vehicle network is

𝑛 = 𝑑−1(𝜏𝑣 ) +
(

𝑄𝑠 + 1
2
𝑄𝑝

)

𝜏 +𝑄𝑠 𝑙
𝑣

+𝑄𝑝𝑣 𝑙
𝑣

. (16)

In (16), we assume that private vehicles share the same average trip length as solo rides. Moreover, 𝜏 = 𝑑
𝑣

is the expected waiting
time that the platform aims at achieving to guarantee an acceptable level of service. Subsequently, the number of idle vehicles
required to maintain this service level is given by 𝑑−1(𝜏𝑣 ) where 𝜏𝑣 stands for the distance traveled by ride-hailing vehicles to
pick up a passenger who waited for a time 𝜏. We conclude that the number of idle vehicle 𝐼 is a function of 𝑣 and is therefore
qual to 𝑑−1(𝜏𝑣 ) where 𝐼 ′ = 𝜕𝐼

𝜕𝑣
< 0.

Proposition 3. The accumulation of the vehicle network 𝑛 increases with 𝑄𝑠 when −𝐼 ′𝑣 < 𝐼 +
(

𝑄𝑠 + 1
2𝑄

𝑝
)

𝜏 and the vehicle network
s in the uncongested regime.

roof. Finding the implicit derivative of 𝑛 with respect to 𝑄𝑠 from (16), we get that

𝜕𝑛
𝜕𝑄𝑠 =

1
2 𝜏𝑣 + 𝑙

𝑣 + (𝑄
𝑝𝑣𝑙
𝑣

+ 𝑄𝑠𝑙
𝑣

− 𝐼 ′𝑣 )𝑣′
. (17)

The numerator of (17) is always positive and the sign of the derivative depends on the denominator. We know from Lemma 1 that
the production function 𝑃 is concave. Therefore, when the vehicle network is in the uncongested regime, 𝑣 + 𝑛𝑣′ is positive.

iven the assumption that −𝐼 ′𝑣 < 𝐼 +
(

𝑄𝑠 + 1
2𝑄

𝑝
)

𝜏, we conclude that 𝑣 + 𝑛𝑣′ < 𝑣 + (𝑄
𝑝𝑣𝑙
𝑣

+ 𝑄𝑠𝑙
𝑣

− 𝐼 ′𝑣 )𝑣′ . This leads to the
enominator of (17) also being positive when the vehicle network is in the uncongested regime, and hence 𝜕𝑛

𝜕𝑄𝑠 > 0. □

3.3.3. Bus network accumulation
With respect to the bus network, estimating the accumulation requires to separate between buses and ride-hailing vehicles as

they both have a non-identical influence on speed. For this purpose, we split the computation of the accumulation into two parts,
where the first part, the one for pooled vehicles, is given by

𝑛𝑝 =
1
2
𝑄𝑝

(

𝑙 + 𝛥𝑙𝑑 (𝑄𝑝)
𝑣

)

, (18)

and the second part, the one for buses, is given by

𝑛𝑏 =
𝑄𝑏𝑙𝑏
�̄�𝑏�̄�𝑏

. (19)

The number of vehicles required to serve all pooled trips utilizing the bus network is dependent on the demand for pooling 𝑄𝑝, but
also on the average driver detour which itself is a function of 𝑄𝑝 as shown by (18). Besides the vehicle accumulation, the number
of buses in network  is computed using (19) where 𝑙𝑏 is the average bus trip length generally greater than 𝑙. Assuming that the
average bus occupancy must be maintained at �̄�𝑏 and the average bus speed at �̄�𝑏, (19) returns the static number of buses required
to serve 𝑄𝑏.

In the following steps, we investigate how the pooled trip duration and the detour time vary with the demand for pooling, and
then subsequently with the accumulation of the pooled drivers in the bus network. In order to accomplish this, we start primarily
by characterizing the equilibria in the bus network. This narrows down to finding the range of values of 𝑄𝑝 such that the production
of pooling vehicles that we denote by 𝑃𝑝(𝑛𝑝, 𝑛𝑏) = 𝑛𝑝𝑣(𝑛𝑝, 𝑛𝑏) intersects with the trip demand 𝐹 such that 𝐹 = 1

2𝑄
𝑝(𝑙+ 𝛥𝑙𝑑 ). For the

urpose of this analysis, it is logical to consider that 𝜕𝐹
𝜕𝑄𝑝 = 1

2 (𝑙+𝛥𝑙𝑑 +𝑄𝑝𝛥𝑙′𝑑 ) > 0 which means that the demand expressed in vehicle
kilometers per hour will always increase with 𝑄𝑝 regardless of the reduction in the driver detour distance. Moreover, we assume
that lim𝑄𝑝→∞ 𝐹 = 0 and lim𝑄𝑝→0 𝐹 = ∞.

Lemma 3. For all 𝑛𝑝 and 𝑛𝑏 such that 𝑛𝑏 + 𝑛𝑝 ≤ �̄�𝑛𝑗𝑎𝑚, (18) has at most two solutions depending on the value of 𝑄𝑝. In case two solutions
exist, one occurs when 𝜕𝑃𝑝

𝜕𝑛𝑝
> 0 and the other occurs when 𝜕𝑃𝑝

𝜕𝑛𝑝
< 0.

roof. We start first by showing that 𝑃𝑝 is concave in 𝑛𝑝. To do so, we compute the second order partial derivative of 𝑃𝑝 with
espect to 𝑛𝑝

𝜕2𝑃𝑝

𝜕𝑛2𝑝
= 1

�̄�

(

2𝑣′ + 1
�̄�
𝑛𝑝𝑣

′′
)

, (20)

which is always negative because if 𝑣′′ < 0, then the sign of the derivative is straightforward. If, however, 𝑣′′ > 0, 𝑛𝑝 < 𝑛𝑝 +
𝑛𝑏

(1+𝑘𝑣 𝑡𝑑
�̄� )2

and since 2𝑣′ + 1
�̄�

(

𝑛𝑝 +
𝑛𝑏

𝑡𝑑

)

< 0 following Lemma 2, the sign of (20) is always negative. Given that 𝑃𝑝 is concave in 𝑛𝑝, it
38
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admits a unique maximum. Moreover, when 𝑛𝑝 = 0 or when 𝑛𝑝 = �̄�𝑛𝑗𝑎𝑚 − 𝑛𝑏, 𝑃𝑝 = 0 for a given 𝑛𝑏. If �̄�∗𝑝 = arg max(𝑃𝑏) is the value
of the pooled vehicle accumulation for which 𝑃𝑝 is maximized, 𝑃𝑝 is increasing when 𝑛𝑝 < �̄�∗𝑝 and decreasing when 𝑛𝑝 > �̄�∗𝑝 . As a
consequence, if the demand value 𝐹 is less than this maximum, then there exist two intersection points between the network supply
and pool vehicle demand. As 𝐹 continues to increase with 𝑄𝑝 and becomes equal to that maximum, the bus network is operating
at capacity such that if the demand for pooling increases further, we will have no solutions. □

For the remainder of this work, we denote the maximum pooling demand that the bus network can serve by 𝑄𝑝
𝑚𝑎𝑥.

Proposition 4. The accumulation of pooling vehicles 𝑛𝑝 increases with 𝑄𝑝 when the bus network is in the uncongested regime.

Proof. Computing the derivative of (18) with respect to 𝑄𝑝, we obtain

𝜕𝑛𝑝
𝜕𝑄𝑝 =

𝜕𝐹
𝜕𝑄𝑝

𝑣 + 𝑛𝑝
𝜕𝑣
𝜕𝑛𝑝

. (21)

Since 𝜕𝐹
𝜕𝑄𝑝 is always positive, then the sign of 𝜕𝑛𝑝

𝜕𝑄𝑝 is dependent on the sign of the denominator. When the bus network is in the
ncongested regime, we know that 𝜕𝑃

𝜕𝑛𝑝
> 0 following Definition 2. This implies that 𝑣+(𝑛𝑝+𝑛𝑏

𝜕𝑣𝑏
𝜕𝑣

) 𝜕𝑣𝜕𝑛𝑝
> 0 and hence 𝑣+𝑛𝑝

𝜕𝑣
𝜕𝑛𝑝

> 0.

s a consequence, 𝜕𝑛𝑝
𝜕𝑄𝑝 > 0 which means that as the demand for pooling increases, the accumulation increases when the bus network

s uncongested. □

Assuming that the solution exists for a given 𝑄𝑝, finding the pooling demand 𝑄𝑝 that will minimize the total trip length for
drivers is equivalent to finding the point where, if passengers continued to pool, they will worsen the cost of the remaining pooling
vehicles in the bus network. In fact, when 𝑄𝑝 increases, this causes the driver detour to decrease hence leading to a non-monotone
change in the bus network accumulation depending on whether we are located in the uncongested or congested regime. Let 𝑇 be
the driver trip length defined by 𝑙+𝛥𝑙𝑑

𝑣
.

roposition 5. If 𝑄𝑝𝛥𝑙′𝑑 approaches zero for a sufficiently large value of 𝑄𝑝, 𝑣 is strictly positive for small values of 𝑄𝑝, and
im𝑄𝑝→∞ 𝛥𝑙′𝑑 = 0, then 𝑇 admits a minimum with respect to 𝑄𝑝 when 𝜕𝑃

𝜕𝑛𝑝
> 0.

roof. First, lim𝑄𝑝→0 𝑇 = ∞ because lim𝑄𝑝→0 𝛥𝑙𝑑 = ∞ and 𝑣 is positive. Therefore, 𝑇 is decreasing for small values of 𝑄𝑝. Next, let
us find 𝜕𝑇

𝜕𝑄𝑝 , the partial derivative of 𝑇 with respect to 𝑄𝑝

𝜕𝑇
𝜕𝑄𝑝 = 𝑑𝑇

𝑑𝑄𝑝 + 𝜕𝑇
𝜕𝑛𝑝

𝜕𝑛𝑝
𝜕𝑄𝑝 (22)

=
𝛥𝑙′𝑑
𝑣

+
− 𝜕𝑣

𝜕𝑛𝑝
(𝑙 + 𝛥𝑙𝑑 )

𝑣2

⎛

⎜

⎜

⎝

𝜕𝐹
𝜕𝑄𝑝

𝑣 + 𝑛𝑝
𝜕𝑣
𝜕𝑛𝑝

⎞

⎟

⎟

⎠

. (23)

Since 𝛥𝑙′𝑑 < 0, the first term of (23) is negative. Moreover, when the production in the bus network strictly increases with 𝑛𝑝,
𝑣 + (𝑛𝑝 + 𝑛𝑏

𝜕𝑣𝑏
𝜕𝑣

) 𝜕𝑣𝜕𝑛𝑝
> 0 and hence 𝑣 + 𝑛𝑝

𝜕𝑣
𝜕𝑛𝑝

> 0. This implies that the second term of the equation is positive because 𝜕𝑣
𝜕𝑛𝑝

≤ 0

and, as assumed earlier, 𝜕𝐹
𝜕𝑄𝑝 = 1

2 (𝑙+𝛥𝑙+𝑄𝑝𝛥𝑙′𝑑 ) > 0. According to the definition of the driver detour function, 𝛥𝑙𝑑 is strictly positive
and decreasing with 𝑄𝑝 since 𝛥𝑙′𝑑 < 0. Due to the assumption that lim𝑄𝑝→∞ 𝛥𝑙′𝑑 = 0, when the bus network is sufficiently large, the
alue of 𝑄𝑝

𝑚𝑎𝑥 is high enough such that 𝛥𝑙𝑑 is approaching 0 and so is 𝛥𝑙′𝑑 while 𝑄𝑝 has not yet attained 𝑄𝑝
𝑚𝑎𝑥. Given that the limit

of 𝑄𝑝𝛥𝑙′𝑑 is zero for sufficiently large 𝑄𝑝, the second term of (23) is bounded while the first term goes to 0. Consequently, when 𝑄𝑝

tends to a sufficiently large 𝑄𝑝
𝑚𝑎𝑥, 𝜕𝑇

𝜕𝑄𝑝 becomes positive. □

Remark 2. The previous analysis also applies for the pooled vehicle accumulation 𝑛𝑝 since 𝜕𝑛𝑝
𝜕𝑄𝑝 > 0 which means that as the demand

for pooling increases, the bus network accumulation does too. As a result, the same behavior of the trip time is observed with respect
to 𝑛𝑝. However, when 𝑣 + 𝑛𝑝

𝜕𝑣
𝜕𝑛𝑝

< 0, the driver trip duration always increases with 𝑛𝑝 since (23) is always negative and 𝜕𝑛𝑝
𝜕𝑄𝑝 < 0.

Proposition 5 implies that there exists at least one value for which 𝜕𝑇
𝜕𝑄𝑝 is equal to 0. Moreover, because 𝜕𝑇

𝜕𝑄𝑝 > 0 when 𝑄𝑝 = 𝑄𝑝
𝑚𝑎𝑥,

we know that 𝑇 admits a minimum over the range (0, 𝑄𝑝
𝑚𝑎𝑥) for a sufficiently large value of 𝑄𝑝

𝑚𝑎𝑥. Fig. 3 displays an example of the
variation of the driver trip duration as function of 𝑄𝑝. When 𝑄𝑝 is small, the decrease in the detour overtakes the decrease in speed
due to the increase in accumulation, and we observe an improvement over the total pooled trip duration. However, after a certain
point, it is the increase in accumulation that causes the bus network speed to deteriorate thus the observed rise in the trip duration.

Having shown the occurrence of the minimum for the total driver trip duration, it is also possible to show its occurrence for the
driver detour time.
39
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Fig. 3. Total pooled trip length as function of the pooling demand 𝑄𝑝.

3.4. System optimum

In the following section, we investigate system optimum solutions under the condition that the fraction of travelers that makes
a pooled trip is centrally chosen by the system operator. Because the purpose of allowing pooled vehicles to use bus lanes is to
decrease the total delays for all commuters in the network, we investigate under a fixed network spatial split 𝛼, 𝛼 being the fraction
of network space allocated to the vehicle network, for what values of 𝛽 we minimize the Passengers Hours Traveled (PHT) for all
three mode users: buses, private vehicles, and ride-hailing users. The ultimate objective is to mitigate congestion in the vehicle
network while simultaneously making sure that disturbances to buses are contained within acceptable ranges. Therefore, we model
our objective as the sum of the individual PHT for every category of travelers with the total PHT function being expressed as

minimize
𝛽∈[0,1]

𝑄𝑝𝑣 𝑙
𝑣

+ 𝛽𝑄𝑟ℎ 𝑙
𝑣

+ (1 − 𝛽)𝑄𝑟ℎ

(

𝑙 + 𝛥𝑙𝑝
𝑣

)

+𝑄𝑏 𝑙𝑏
𝑣𝑏

, (24)

here the first, second, and last terms correspond to delays for private vehicles, solo passengers, and bus users respectively. The
hird term reflects the PHT for pooled passengers using the bus network. Note that in (24), we substitute the driver detour 𝛥𝑙𝑑 with
he passenger detour 𝛥𝑙𝑝 to consider the additional distance incurred by passengers compared to a direct trip between their origins
nd destinations. The behavior of the passenger detour however is assumed to be comparable to that of the driver detour such that
hey both monotonically decrease with 𝑄𝑝. Minimizing over 𝛽 is therefore equivalent to finding the optimal demand split between
𝑠 and 𝑄𝑝 such that 𝑄𝑠 +𝑄𝑝 is always equal to 𝑄𝑟ℎ. Therefore, knowing that 𝜕𝑄𝑝

𝜕𝑄𝑠 = −1, the first order partial derivative of the PHT
with respect to 𝑄𝑠 – considering all the implicit dependencies of 𝑣 , 𝑣, and 𝑣𝑏 on 𝛽 – represents the change in PHT due to a shift
f one unit of demand from 𝑄𝑝 to 𝑄𝑠, and is given by:

− 1
𝑣

𝜕𝑣
𝜕𝑛

𝜕𝑛
𝜕𝑄𝑠

(

𝑄𝑠 𝑙
𝑣

+𝑄𝑝𝑣 𝑙
𝑣

)

+ 1
𝑣

𝜕𝑣
𝜕𝑛𝑝

𝜕𝑛𝑝
𝜕𝑄𝑝

(

𝑄𝑏 𝑙𝑏
𝑣

+𝑄𝑝 𝑙 + 𝛥𝑙𝑝
𝑣

)

+ 𝑙
𝑣

−
𝑙 + 𝛥𝑙𝑝
𝑣

−
𝑄𝑝𝛥𝑙′𝑝
𝑣

. (25)

We note that in the previous equation, we replaced 𝑣𝑏 by its function as shown in (3). Therefore, 𝜕𝑣𝑏
𝜕𝑣

= 1

(1+𝑣
𝑡𝑑
�̄� )2

. Following

roposition 3 that 𝜕𝑛
𝜕𝑄𝑠 is positive when the vehicle network is in the uncongested regime, the first term in (25) reflects the increase

n PHT due to the addition of one unit of solo demand to the vehicle network. Next, following Proposition 4 that 𝜕𝑛𝑝
𝜕𝑄𝑝 is positive

when the bus network is in the uncongested regime, the second term represents the decrease in network delays due to the shift of
one demand unit from 𝑄𝑝 to 𝑄𝑠. This shift also results in the addition of a solo trip duration and the reduction of a pooled trip
duration as shown by the third and fourth terms of the equation respectively. Finally, the last term shows the increase in pooled
trip detour duration due to the loss of one unit of pooled demand. We note here that further analysis of (25) is not straightforward
because it requires having a well-defined shape of the PHT function, which in our problem is not the case. For this reason, the
function is numerically assessed in Section 4.

3.5. Benchmark

To show under what conditions the proposed policy is efficient, we compare the delays obtained to the benchmark scenario
where all ride-hailing users travel in the vehicle network. The consequence of this assumption is that the bus network becomes
40

exclusively utilized by buses whereas pooling requests perform their trips on the vehicle network. They travel at a speed equal
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Table 2
Main parameters.
Parameter Symbol Value Unit

Demand for private vehicles 𝑄𝑝𝑣 80 000 pax/h
Demand for buses 𝑄𝑏 30 000 pax/h
Demand for e-hailing 𝑄𝑟ℎ 15 000 pax/h
Average vehicle trip length 𝑙 3.86 km
Average bus trip length 𝑙𝑏 5.40 km
Average spacing between bus stops �̄� 0.8 km
Average bus dwell time at stops 𝑡𝑑 40 s
Ride-hailing platform target waiting time 𝜏 2 min
Average bus occupancy �̄�𝑏 20 pax
Design bus speed �̄�𝑏 18 km/h
Network area 𝐴 107 km2

Solo-ride fare 𝐹 𝑠 6 $
Monetary value of time 𝜇 30 $/h
Binary logit scale parameter 𝜅 1 –
Scale parameter of the nest 𝜅𝑝 2 –

to 𝑣 whereas the bus speed 𝑣𝑏 remains constant independently of 𝑄𝑠. Minimizing network delays under this assumption consists
thereafter of finding a solution of the objective function

minimize
𝛽∈[0,1]

𝑄𝑝𝑣 𝑙
𝑣

+ 𝛽𝑄𝑟ℎ 𝑙
𝑣

+ (1 − 𝛽)𝑄𝑟ℎ

(

𝑙 + 𝛥𝑙𝑝
𝑣

)

+𝑄𝑏 𝑙𝑏
𝑣𝑏

. (26)

he first order partial derivative of the PHT with respect to 𝑄𝑠 with 𝑄𝑠 = 𝛽𝑄𝑟ℎ under the benchmark scenario is

− 1
𝑣

𝜕𝑣
𝜕𝑛

𝜕𝑛
𝜕𝑄𝑠

(

𝑄𝑠 𝑙
𝑣

+𝑄𝑝𝑣 𝑙
𝑣

+𝑄𝑝 𝑙 + 𝛥𝑙𝑝
𝑣

)

+ 𝑙
𝑣

−
𝑙 + 𝛥𝑙𝑝
𝑣

−
𝑄𝑝𝛥𝑙′𝑝
𝑣

. (27)

The first element in (27) shows the effect of an increase in a unitary solo demand value on the users of the vehicle network.
s opposed to the space allocation policy proposed, this shift has the same effect on delays for all private vehicles, solo trips, and
ooled trips since they all use the vehicle network. The second and third terms are comparable to the trip duration terms in (25)
xcept that the speed in this case is 𝑣 for both solo and pooled trips. Similarly, the last term is the detour penalty due to the loss
f one unit of pooled trip demand. Notice here that the number of buses in the bus network 𝑛𝑏 is constant. Consequently, as no
ooled vehicles are allowed on the bus network, the last term in (26) remains constant and is independent of 𝑄𝑠. We note here that
he reason why the solution does not always yield a value of 𝛽 = 0 is that the detour comes into question in this particular setting.
onsequently, when the total ride-hailing demand is lower than the critical boundary after which pooling becomes attractive, a
cenario where 𝑄𝑝 = 𝑄𝑟ℎ is not necessarily the optimum.

. Numerical example

In the following section, we present a comprehensive numerical analysis of the influence of 𝛽 on the network delays. Moreover,
we carefully analyze how these delay values change with the property of the infrastructure by computing the PHT for different
network configurations, i.e., for different 𝛼 values. We assess the system optimum from a macroscopic approach for the main two
scenarios: (i) the benchmark scenario that we refer to by {𝑝𝑣, 𝑠, 𝑝} |{𝑏}, and (ii) the proposed strategy in this work that we denote
by {𝑝𝑣, 𝑠} |{𝑝, 𝑏}. To do so, we consider a numerical example using MFD, dispatched distance, and detour functions satisfying the
ssumptions we put forward throughout Section 3. The fixed parameters that we adopt in this example are presented in Table 2.
e assume that the dispatched distance 𝑑 is a function of the density of idle drivers, and is given by 𝑑(𝐼) = 0.63

√

𝐴∕𝐼 (Zha et al.,
2018a). The production function of the entire network under consideration is 𝑃 (𝑛) = 𝐴0𝑛3 + 𝐵0𝑛2 + 𝐶0𝑛 where 𝐴0 = 5.74 ⋅ 10−9,
𝐵0 = −1.02 ⋅ 10−3, and 𝐶0 = 40, and is concave over the interval of interest 𝑛 ∈ [0, 58536]. The three-dimensional vehicle MFD for
the bus network is obtained by multiplying the production MFD in the bus network with 𝑘(𝑛𝑏) = 𝑒−6.5⋅10−4𝑛𝑏 , and is used to compute
the running speed in the bus network. With regard to the driver and passenger detour, their functional form is highly dependent
on the OD distribution of 𝑄𝑝. In this work, we use the demand pattern from Beojone and Geroliminis (2021), and we build the
detour functions according to the matching optimization framework exhibited in the Appendix. The results are then fitted into the
following functional forms where 𝛥𝑙𝑑 (𝑄𝑝)∕𝑙 or 𝛥𝑙𝑝(𝑄𝑝)∕𝑙 is equal to 𝑎𝑖∕𝑄𝑝𝑏𝑖 + 𝑐𝑖 for 𝑖 ∈ {𝑑, 𝑝} depending on whether we are dealing
with the driver or passenger detour. The values of the constants are equal to 𝑎𝑑 = 42.1, 𝑏𝑑 = 0.570, and 𝑐𝑑 = 0.395 for the driver
detour, and 𝑎𝑝 = 25.8, 𝑏𝑝 = 0.674, and 𝑐𝑝 = 0.0669 for the passenger detour, assuming that 𝑄𝑝 ∈ (0, 12000]. When 𝑄𝑝 is greater than
12000, simulating the optimal matching becomes computationally exhaustive. We adopt therefore for this case a functional form
that follows the same trend but goes to 0 for large enough 𝑄𝑝 such that the detour is equal to 𝑎𝑖𝑒−𝑏𝑖(𝑄

𝑝−11880) and the values of the
−5 −5
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constants are 𝑎𝑑 = 0.596 and 𝑏𝑑 = 1.61 ⋅ 10 for the driver detour, and 𝑎𝑝 = 0.113 and 𝑏𝑝 = 2.31 ⋅ 10 for the passenger detour.
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Fig. 4. Accumulation and PHT for {𝑝𝑣, 𝑠, 𝑝} |{𝑏}, i.e., when only buses are allowed to utilize the bus network.

4.1. System optimum and comparison to benchmark

For the scenario where all ride-hailing vehicles are using the vehicle network, the results for the accumulation and PHT as
function of 𝛽 for different spatial splits 𝛼 are presented in Fig. 4. First, the network accumulation is naturally the lowest when the
full ride-hailing demand is pooling and when 𝛼 takes the largest possible value while still accommodating the bus demand. This
means that a sufficiently high spatial capacity is granted for private vehicles and ride-hailing vehicles as can be seen from Fig. 4(a).
However, this does not entail that the minimum delay is achieved for the same values of 𝛼 because as 𝛼 increases the space available
for buses shrinks causing very high travel times to travelers in the bus network. This is inferred by looking at Fig. 4(b) where the
PHT for different values of 𝛽 starts increasing after reaching its lowest possible point. This occurs when decreasing the size of the
bus network overtakes the gains from having a larger space dedicated to ride-hailing and private vehicles. This increase becomes
more accentuated when the demand for buses 𝑄𝑏 is relatively high. The slight drop observed in the accumulation and PHT curves
for high values of 𝛽 is attributed to the high detour incurred when the demand for pooling is low. In fact, the detours for high values
of 𝛽 and therefore low values of 𝑄𝑝 become exorbitantly large such that it is always better for all passengers to travel solo instead
of pooling their rides.

Fig. 5 displays the variation of accumulation and PHT as function of 𝛽 for the strategy proposed in this paper. The results here
are different from what is observed in Fig. 4. This distinction is significantly caused by two different trends: (i) as 𝛽 increases, less
vehicles use the bus networks creating fewer disturbances to bus users, ii) conversely, with the increase of 𝛽, more vehicles are
needed to perform a solo ride in the vehicle network. This deteriorates the speed in the latter causing both the accumulation and
delay to increase, particularly when the space allocated for the vehicle network is relatively small. What is interesting to note here
is that, unlike the previous case, we obtain very similar values for the system optimum independently of the value of 𝛼. While
changing 𝛼 in reality requires significant infrastructure costs, influencing 𝛽 is more of an operational decision. Therefore, given that
demands can even change seasonally, having the ability to improve network conditions without changing 𝛼 highlights the potential
of the proposed approach. An example on when this happens is observed in Fig. 5(b) where the values of PHT are the same for
different network splits 𝛼, and the reason behind this observation is the change in the fraction of pooling ride-hailing passengers.

To further understand the variation of the overall PHT with 𝛽, we plot the individual PHT values for every mode user for
the benchmark scenario and for the proposed allocation strategy. The results are displayed in Figs. 6 and 7 respectively. First,
when comparing the PHT for private vehicles for the two scenarios, the values are much higher for low values of 𝛼 and hence the
infrastructure capacity for this spatial split does not meet the demand levels for different modes even when 𝛽 = 0 as shown in
Fig. 6(a). Despite this common observation for the two scenarios, the delays of private vehicles are lower for the proposed strategy
as seen in Fig. 7(a), mainly because less ride-hailing vehicles are utilizing network  . Another intuitive difference we note is that,
when looking at the benchmark scenario, bus delays remain unchanged as function of 𝛽 (see Fig. 6(c)) as opposed to the delays in
Fig. 7(c). This is because when the pooling demand is high, the outcome is a significant increase in the bus and pooling vehicle PHT
values, whereas in the benchmark scenario, the bus PHT is constant with 𝛽 as no pooling vehicles are allowed to switch to the bus
network. On the contrary, as more passengers choose to travel solo, the solo passenger and private vehicle delays are impacted as
shown in Figs. 7(a) and Fig. 7(b). With respect to the ride-hailing demand, the interpretation of the variation of PHT for solo rides
in Fig. 6(b) is similar to that observed in Fig. 7(b). However, with respect to the variation of PHT for pooled rides in Fig. 6(d), the
delays rise to values greater than the ones observed in Fig. 7(d) for small values of 𝛽 indicating that when the number of drivers
using the bus lanes is high, the deterioration in the bus network speed is very significant. To mitigate this influence, we assess in
Section 4.4 the potential improvement we get by only sending a fraction of pooling vehicles to the bus network.

Next to understand how the variation of bus demand influences the system optimum, we plot the total PHT as function of 𝛽 for
different values of 𝑄𝑏 assuming that 𝛼 is fixed, and we display the results in Fig. 8. It can be noted that for a predetermined network
split 𝛼, as the bus demand increases, the system optimum occurs for higher values of 𝛽 implying the need to restrict the delays for
bus users especially when 𝑄𝑏 is relatively high.
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Fig. 5. Accumulation and PHT for {𝑝𝑣, 𝑠} |{𝑝, 𝑏}, i.e., when pooling vehicles utilize the bus network.

Fig. 6. PHT for every category of mode users in the network for the scenario {𝑝𝑣, 𝑠, 𝑝} |{𝑏}, i.e., when only buses are allowed to utilize the bus network.

The results we display so far showed consistent observations irrespective of the values of 𝛼, 𝛽, or bus demand 𝑄𝑏. In the next
step, we assess the multi-modal delay functions for both the benchmark and the proposed allocation strategy, this time by varying
the shape of the production function.

4.2. Results for different production functions

In practice, MFDs represent physical properties of the transport network, and they contain scatter due to various reasons
(e.g. aggregating together non-steady states, weather conditions, different driving behavior, spatial heterogeneity of congestion).
MFD functions can therefore vary significantly, and many efforts tend towards analyzing the accuracy of the different functional
forms, but also advancing new parsimonious forms capable of fitting both uncongested and saturated regimes (Cheng et al., 2021).
This is why it is crucial to assess the influence of different production functions on our results. For this purpose, we regenerate
the results in Section 4.1 by considering an exponential production function 𝑃 (𝑛) = 200𝑛𝑒−

1
𝑛𝑐𝑟

𝑛−1.4 and a logarithmic production
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Fig. 7. PHT for every category of mode users in the network for the scenario {𝑝𝑣, 𝑠} |{𝑝, 𝑏}, i.e., when pooling vehicles utilize the bus network.

Fig. 8. PHT as function of 𝛽 for different bus demand 𝑄𝑏 for the scenario {𝑝𝑣, 𝑠} |{𝑝, 𝑏}, i.e., when pooling vehicles utilize the bus network.

function 𝑃log(𝑛) = −3.4𝑛 log ( 𝑛+4040 ) + 40𝑛 in addition to the baseline polynomial function in Section 4 that we denote by 𝑃pol. Because
in this part we will restrict our analysis to the free-flow regime, we will only consider 𝑛 ∈ [0, 𝑛𝑐𝑟], and can hence neglect the
functions’ behavior for larger accumulations. The choice of these functions is made such that they all have the same network capacity
achieved for the same value of critical accumulation 𝑛𝑐𝑟. Fig. 9 displays the speed and production curves for the three functions
under assessment. We utilize these production curves to plot the graph of PHT as function of 𝛽 for both the benchmark scenario and
the proposed allocation strategy. The obtained results are displayed in Fig. 10. We note that, for the exponential and polynomial
functions, the results are relatively identical given the similarity between the two production functions. Nevertheless, as the speed
is generally higher when using an exponential function, the range of values of PHT is smaller compared to the baseline scenario
where a polynomial function is used. A substantial difference can be nonetheless observed when comparing the baseline polynomial
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Fig. 9. Different speed and production functions.

Fig. 10. PHT for the benchmark and allocation strategy for different production functions 𝑃 .

function with the PHT graphs obtained for 𝑃log. The first difference we note is that the PHT is relatively constant regardless of 𝛽,
indicating that an increase in pooling has little influence on the network delays. This can be explained by looking at the logarithmic
speed function 𝑣log in Fig. 9(a) where the speed sharply decreases with accumulation before reaching a plateau. Given that the
range of solutions occurs when the speed values are unvarying, little pooling benefit is derived. In other terms, having a lower fleet
size does not necessarily cause a substantial improvement on speed. For the allocation strategy however, the differences are more
accentuated. This is because adding more vehicles to the bus network causes a sharp decrease in speed, which explains why the
minimum PHT always occurs when the entirety of the ride-hailing demand is using the vehicle network.

So far, we have assessed the total network delays by mainly assuming that the solo-pool demand split is an exogenously defined
variable. Interestingly in almost all cases, the optimal value of 𝛽 is far from the extreme values, i.e., 𝛽 = 0 or 𝛽 = 1, highlighting
the need for carefully designed strategies or regulations to improve the mobility of the system. We know however that the pooling
fare discount and the difference in pooled and solo trip time are the major factors determining the choice of ride-hailing users, and
subsequently the value of this split. In the following subsection, we elaborate on how a pooling fare discount is a compelling tool
that enables steering the split factor 𝛽 towards better solutions.

4.3. Mode choice

To illustrate how the results of this work can potentially be utilized to drive the network into the system optimum, we replicate
the choice of ride-hailing users for the following scenario {𝑝𝑣, 𝑠} |{𝑝, 𝑏}, i.e., when pooling vehicles utilize the bus network.
However, instead of 𝛽 being a decision variable in our problem, we set it as the result of a mode choice model between solo and
pool rides that we denote by 𝛽𝑀𝐶 . Therefore, 𝛽𝑀𝐶 itself is not only function of the travel time costs in the vehicle and bus network
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Fig. 11. PHT and pooling price discount for a fixed 𝛼.

ut also of the pooling discount factor. The equation for 𝛽𝑀𝐶 is given by a standard logit model even if more complex models
ould also be introduced. However, given the lack of available data to calibrate these models, we consider that such a simplistic
odel could allow for a comparison of results between optimal 𝛽 and users’ choice to create some intuition. It follows that 𝛽𝑀𝐶 is

omputed using

𝛽𝑀𝐶 =
exp

(

−𝜅(𝐹 𝑠 + 𝜇𝑡𝑠)
)

exp
(

−𝜅(𝐹 𝑠 + 𝜇𝑡𝑠)
)

+ exp
(

−𝜅(𝜙𝐹 𝑠 + 𝜇𝑡𝑝)
) , (28)

with 𝑡𝑠 = 𝑙
𝑣

and 𝑡𝑝 = 𝑙+𝛥𝑙𝑝
𝑣

. In the above equation, 𝑡𝑠 and 𝑡𝑝 are the travel times for solo and pooled trips, both dependent on the
value of 𝛽𝑀𝐶 . The constant 𝜅 > 0 is the binary mode choice scale parameter, 𝜇 is the monetary value of time, and 𝐹 𝑠 is the fare
for solo rides. To encourage ride-hailing users to share their rides, the service operator introduces a discount factor to 𝐹 𝑠 that we
denote here by 𝜙. Combining the obtained results with the choice model, we resort to a numerical example to elucidate what should
be this discount 𝜙 that drives the split towards 𝛽∗ which is the point that minimizes the total PHT. The value 𝜙∗ in this case is the
discount factor that yields a demand split naturally occurring at 𝛽∗.

To elaborate more on this approach, we take an example of 𝛼 = 0.84 and display in Fig. 11 the PHT when 𝛽 is exogenous.
We also show the pooling discount factor 𝜙 that we backcalculate to yield the same value of PHT given 𝑡𝑠 and 𝑡𝑝 using (28) for
every value of 𝛽. This discount factor attains negative values when 𝛽 = 0 because the speed in the bus network is too low when
everyone is pooling. Therefore, despite the reduction in the travel distance due to the low detour incurred, the travel time remains
very high. Consequently, passengers will favor traveling solo as the conditions in the vehicle network are relatively better, or else
they should be awarded the appropriate monetary incentives to continue traveling in the bus network. As 𝛽 increases, the discount
factor becomes larger and its value exceeds one. At this point, the use of the bus network becomes privileged, and passengers who
opt for a pooled trip are charged more compared to a solo trip. The drop in the discount factor that we observe when 𝛽 approaches
one is substantiated by the large decrease in the detour distance due to the low engagement in pooling, which results in a very high
traveled distance even if the speed 𝑣 is high.

The different solutions that we displayed so far assume that all the pooling vehicles utilize the bus network to perform their
trips. However, this results in suboptimal solutions basically because we impose in advance the use of bus lanes by all vehicles
irrespective of the speeds in the two networks. In the section below, we relax this assumption by only allowing a fraction of the
pooling to utilize the bus lanes.

4.4. System optimum when restricting the number of pooled vehicles in the bus network

In this section, we investigate the total PHT for all users in the network in case where only a fraction of the total pooling vehicles
utilizes the bus network. We refer to this scenario by the notation {𝑝𝑣, 𝑠, 𝑝} |{𝑝, 𝑏} to indicate that pooling vehicles drive on both
networks. Also, we denote by 𝛾 the fraction of 𝑄𝑝 utilizing bus lanes. Therefore, finding the system optimum in the network is
equivalent to finding 𝛽 and 𝛾 that minimize

minimize
𝛽∈[0,1],𝛾∈[0,1]

𝑄𝑝𝑣 𝑙
𝑣

+ 𝛽𝑄𝑟ℎ 𝑙
𝑣

+ (1 − 𝛾)(1 − 𝛽)𝑄𝑟ℎ

(

𝑙 + 𝛥𝑙𝑝
𝑣

)

+ 𝛾(1 − 𝛽)𝑄𝑟ℎ

(

𝑙 + 𝛥𝑙𝑝
𝑣

)

+𝑄𝑏 𝑙𝑏
𝑣𝑏

. (29)

When 𝛾 = 1, the solution becomes equivalent to that of finding the optimal 𝛽 given that all pooled passengers use the bus network
s in (24). In opposition, when 𝛾 = 0, we replicate the minimization problem given by (26) where the system behaves without any
articular intervention from the network regulator. Finally, when 𝛾 > 0 and 𝛾 < 1, we emulate the scenario where only a fraction of
ooling vehicles utilizes the bus network. We investigate these situations mainly due to two reasons: i) some users might still opt for
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Fig. 12. Comparison of the {𝑝𝑣, 𝑠, 𝑝} |{𝑝, 𝑏} scenario for the two different values of 𝛼, i.e., when a fraction of pooling vehicles utilizes the bus network.

pooling without really having to use the bus network, and (ii) for the ride-splitting company to continue providing a door-to-door
service, a portion of the pooled trip must be performed in the vehicle network especially when the value of 𝛼 is relatively large,
and the bus network does not cover the entirety of the network space. Pool vehicles therefore have to travel in the vehicle network
for some part of their trips, particularly for the first and last mile.

Figs. 12(a) and 12(b) show the results of PHT as function of the fraction of pooling vehicles allowed to use the bus lanes for
𝛼 = 0.82 and 𝛼 = 0.87. For high values of 𝛽, i.e. when the demand for pooling is low, the value of 𝛾 that minimizes the PHT is equal
to 1 because of the low engagement levels in pooling. If all pooled vehicles hence use the bus lanes, the disturbance to buses is
naturally limited but the improvements to the vehicle network are significant. Nevertheless, when the demand for pooling is high,
the system optimum is achieved for a value of 𝛾 < 1. This is because the delays for buses become the factor modulating the objective
in this case. The same applies for 𝛼 = 0.87 except that for this case, the best solutions are achieved for high values of 𝛽 yet lower 𝛾
since the potential of exploring the underutilized capacity in the bus lanes is restrained.

4.5. Mode choice with optional pooling in the bus network

In the following part, we replicate the same analysis as in Section 4.3 assuming nevertheless that only a fraction of the total
pooling demand opts for traveling in the bus network. For this reason, we introduce two variables 𝜙 and 𝜙 to represent the two
discount factors that the operator offers to pooling passengers traveling in the vehicle and bus network respectively. To model the
choice of users between solo, pooling in the vehicle network, and pooling in the bus network, we resort to a multinomial nested
logit. At the lower level, users who select to share their rides and travel in the bus network are represented by the fraction 𝛾𝑀𝐶

where

𝛾𝑀𝐶 =
exp

(

−𝜅𝑝(𝜙𝐹 𝑠 + 𝜇𝑡𝑝)
)

exp
(

−𝜅𝑝(𝜙𝐹 𝑠 + 𝜇𝑡𝑝)
)

+ exp
(

−𝜅𝑝(𝜙𝐹 𝑠 + 𝜇𝑡𝑝 )
) . (30)

At the upper level, the choice between solo and pool is given by

𝛽𝑀𝐶 =
exp

(

−𝜅(𝐹 𝑠 + 𝜇𝑡𝑠)
)

exp
(

−𝜅(𝐹 𝑠 + 𝜇𝑡𝑠)
)

+ exp
(

𝜅
𝜅𝑝

ln
(

exp
(

−𝜅𝑏(𝜙𝐹 𝑠 + 𝜇𝑡𝑝)
)

+ exp
(

−𝜅𝑏(𝜙𝐹 𝑠 + 𝜇𝑡𝑝 )
)

)) , (31)

where

𝑡𝑝 =
𝑙 + 𝛥𝑙𝑝

(

𝛾𝑀𝐶 (1 − 𝛽𝑀𝐶 )𝑄𝑟ℎ)

𝑣
(32)

and

𝑡𝑝 =
𝑙 + 𝛥𝑙𝑝

(

(1 − 𝛾𝑀𝐶 )(1 − 𝛽𝑀𝐶 )𝑄𝑟ℎ)

𝑣
. (33)

The parameter 𝜅𝑝 is the scale parameter associated with the nest. Next, we follow the same approach as in Section 4.3 with the
only difference that under the nested logit, we compute what should be the values of both 𝜙 and 𝜙 that regenerate all possible
combinations for 𝛾 and 𝛽. The results for 𝜙 and 𝜙 as function of 𝛾𝑀𝐶 for different values of 𝛽𝑀𝐶 are displayed in Fig. 13. The first
point to note is that as speed in the bus network is higher in theory than that in the vehicle network, pooling passengers are granted
a higher discount for them to accept the pooling option compared to the ones driving in the bus network. Moreover, in Fig. 13(a)
as the value of 𝛾𝑀𝐶 becomes close to 1, the discount factor becomes equal to 0 because the detour is naturally high for the pooling
passengers driving in the vehicle network. The same logic applies to Fig. 13(b) for values of 𝛾𝑀𝐶 approaching 0 as this means that
no users are opting for pooling their rides in the bus network. The non-monotonicity observed in both graphs is simply the result of
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Fig. 13. The different discount factors 𝜙 and 𝜙 and PHT as function of 𝛾𝑀𝐶 for 𝛼 = 0.82.

the interaction between two factors: the change in the network speed from one side, and the change in the detour distance from the
other, both factors being the results of pooling passengers choosing between using the vehicle or bus network. These results however
are highly dependent on the population under consideration. Moreover, the two discount factors that minimize the network delays
are not necessarily that maximizing the profit of the ride-hailing operator. Consequently, further thoughts should be given to how
to encourage ride-hailing platforms to offer appropriate service pricing and pooling discounts so that total network delays coincide
with the system optimum observed in Fig. 13(c).

4.6. Comparison of the system optimum for different scenarios

In the following part, we compare the system optimum for the three different strategies tackled in this work: {𝑝𝑣, 𝑠, 𝑝} |{𝑏},
{𝑝𝑣, 𝑠} |{𝑝, 𝑏}, and {𝑝𝑣, 𝑠, 𝑝} |{𝑝, 𝑏} and for a predetermined network split 𝛼. The objective is to evaluate whether by relaxing the
assumption that all pooled vehicles must use the bus network, we are able to achieve some improvements by bounding the amount
of disruption allowed to buses. The results of the PHT for two different values of 𝛼 are shown in Fig. 14.

If the fraction of passengers opting for a solo ride is high enough, we observe no improvement by allowing a fraction of the
pooling demand to use the bus network, which explains the overlap between the full and dotted lines for large values of 𝛽 in
Fig. 14(a). The gap however starts increasing between the two lines when 𝛽 is low. Consequently, reducing network delays by
allowing pooled vehicles on bus lanes is beneficial if the number of pooled vehicles is capped. Otherwise, the delays caused to buses
counterbalance all the advantages associated with pooling. The same analysis applies to Fig. 14(b) where 𝛼 is set to 0.87 compared
to 0.82 in the first case. Nevertheless, we observe here that the gap between the full and dotted lines shrank because of the lower
space allocated to the bus network which makes it impossible to be utilized by high-occupancy vehicles.

5. Conclusion

In this paper, we analyze how, by giving pooled ride-hailing vehicles access to dedicated bus lanes, we can improve the
performance of the transportation network under some specific settings. Our main methodological contributions lie in the following:
(i) we propose a model for demand allocation for multi-modal transportation systems based on macroscopic fundamental diagrams,
(ii) we examine the existence of an equilibrium between network supply and multi-modal demand and (iii) we point out the
versatility of our model using a numerical example by assessing network delays for the solo-pool split ratio but also for the pooling
fraction allowed on bus lanes. The results show that when the bus network is relatively large, assigning pooled drivers to bus lanes
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Fig. 14. Comparison of the results for three different strategies for two different values of 𝛼.

improves congestion in the vehicle network without causing large disturbances to the bus users in the dedicated bus lanes. When the
fraction of pooling demand is high however, the deterioration in the bus network speed becomes more accentuated and an increase
in the bus delays is inevitable. In this case, it becomes useful to restrict a portion of the pooled vehicles to travel on bus lanes to
keep the bus network speed within acceptable bounds. Additionally, in this study, we assessed one simple pricing strategy that has
the potential to drive the network towards its system optimum. Instead of it being an exogenous variable, we consider that the
solo-pool demand split is the choice outcome of ride-hailing users. That being the case, we investigate the pooling discount factor
that coincides with the system optimum. From the ride-hailing operators’ point of view however, this discount does not necessarily
maximize their profits. Taking into account the operators’ objective requires hence proper modeling of the revenues which are
dependent on 𝐹 𝑠 and 𝜙, and the costs which are function of the fleet size 𝑁 .

Practically, the allocation strategy we propose is easily implementable and effortlessly trackable because it does not require
change in the infrastructure, and is a time-independent modal space allocation strategy. Given the macroscopic feature of the

etwork under consideration, it is possible to determine the recommended number of pool ride-hailing vehicles allowed to use the
us network. BLIP can be also incorporated within this framework in a hierarchical manner, where, after the upper layer determines
he number of cars in the bus lane, a BLIP framework can be applied to further enhance the performance. In the future, we plan to
nvestigate a relevant branch of research where regulators set the cap on the maximum number of pooled vehicles allowed on the
us network while operators decide on the pooling discount factor. Moreover, in the current work, we only considered a 2-passenger
hared trip. We nevertheless plan to assess the potential of our policy to improve network delays when the service is extended to an
n-demand micro-transit service where the capacity of vehicles exceeds two. Finally, investigating the problem in dynamic settings
ith time-dependent demands, and possibly fleet sizes, is also another research priority. This requires a proper simulation framework

hat we plan to create in attempt to assess the occupancy-dependent dynamic pricing strategies that we aim to develop.
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Appendix. Driver and passenger detour

In the following section, we resort to simulated data to assess the usefulness of pooling in terms of traveled distance savings.
The ultimate objective of the approach we undertake is to produce a driver and passenger detour functions 𝛥𝑙𝑑 and 𝛥𝑙𝑝 to utilize in
our numerical assessment of the proposed space allocation policy. For this purpose, we make use of the set of taxi trips generated
from real data in the Chinese city of Shenzhen by Beojone and Geroliminis (2021) to simulate the set of pooling requests that arrive
to the ride-hailing platform.

Considering a scenario where only two requests are allowed to share their rides, enumeration of the possible trip combinations
is straightforward. If 𝑖 and 𝑗 are the first and second passengers to be picked up respectively with origin nodes 𝑂𝑖 and 𝑂𝑗 , and
destination nodes 𝐷𝑖 and 𝐷𝑗 , and if 𝑙𝑗 is the distance 𝑂𝑗𝐷𝑗 , then the resulting trip possibilities consist of but are not limited to
49

𝐸1 and 𝐸2 as shown in Fig. 15. In 𝐸2, both passengers experience a detour whereas in 𝐸1, the second passenger to join the trip
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Fig. 15. Schematic of the two different types of pooling trips.

Fig. 16. Simulated data and fitted curve for the driver and passenger detour ratio.

is directly dropped off without any extra distance traveled. We note that the trip possibilities are in fact much larger in dynamic
ride-splitting where requests arrive progressively to the platform and hence the sharing opportunities are more elaborate as in Jung
et al. (2016). In this study however, we limit our analysis to the static case where every passenger shares the ride with at most one
other passenger along the full trip.

If 𝑛𝑝𝑎𝑠 is the set of passengers willing to share their rides with |𝑛𝑝𝑎𝑠| being an even number, we look for pooling trips that minimize
the total distance traveled for drivers. To do so, we formulate the problem at hand as an LP with 𝑧𝑖𝑗 being the decision variable
set to 1 if passenger 𝑖 is assigned a pooled trip with passenger 𝑗, and to 0 otherwise. Accordingly, we formulate the objective and
constraints of this problem as

minimize
𝑧∈{0,1}𝑛pas×𝑛pas

∑

𝑖

∑

𝑗
𝑐𝑖𝑗𝑧𝑖𝑗 (34a)

subject to
∑

𝑘
(𝑧𝑖𝑘 + 𝑧𝑘𝑖) = 1 ∀𝑖 ∈ 𝑛𝑝𝑎𝑠 (34b)

𝑧 ∈ {0, 1} (34c)

where

𝑐𝑖𝑗 =

{

min(𝑂𝑖𝑂𝑗 + 𝑙𝑗 +𝐷𝑗𝐷𝑖, 𝑂𝑖𝑂𝑗 + 𝑂𝑗𝐷𝑖 +𝐷𝑖𝐷𝑗 , ) if 𝑖 ≠ 𝑗
+∞ if 𝑖 = 𝑗.

(35)

The objective function (34a) minimizes the trip distance for all pooled trip possibilities with 𝑐𝑖𝑗 being the minimum distance
over the two trip options 𝐸1 and 𝐸2 and is given by (35). Constraint (34b) guarantees that each passenger in the set of requests 𝑛𝑝𝑎𝑠
is assigned to exactly one pooled trip whereas constraint (34c) ensures that 𝑧 is a binary variable.

The results for the average normalized driver and passenger detours as function of the number of pooled passengers are displayed
in Fig. 16. Intuitively, the detour decreases with the number of passengers as the chances of finding an attractive pooling trip
50
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𝑂

Fig. 17. Normalized distance traveled for different pooled trip segments.

ncrease. Because in the approach we follow, we do not set a bound on the allowable passenger detour, the total trip distance
omputed as 𝑙 + 𝛥𝑙𝑑 attains very large values when the number of pooling passengers is low.

In addition to the detour, it is interesting to look at the different normalized distance traveled for some of the segments of a
ooled trip as function of the number of pooling passengers as shown in Fig. 17. Note that we display the normalized trip portions
𝑖𝑂𝑗 , ̃𝑂𝑗𝐷𝑖, ̃𝐷𝑖𝐷𝑗 , and ̃𝐷𝑗𝐷𝑖. The main conclusions that we derive here are that even if the pooled driver trip length decreases

because of the smaller detour, the normalized segment of the trip ̃𝑂𝑗𝐷𝑖 performed with two passengers inside the vehicle grows
with the number of pooling passenger. As pooling becomes more efficient, passengers with both neighboring origins and destinations
are pooled together, and the resulting trips are labeled as optimal on the network level. In our framework, this is an important
observation from an implementation point of view because even if only ride-hailing vehicles with an occupancy of two are allowed
in the bus network, the proposed policy has the potential to continue being favorable.
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